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ENGINEERING ASPECTS OF CONTROL SYSTEM DESIGN
VIA THE "DIRECT METHOD" OF LIAPUNOV™

Richard V. Mcnopoli, Ph.D.

The University of Connecticut, 1965

A control system synthesis procedure for linear or nonlinear, time
varylng, single-input, single-output plants is developed into a useful engi-
neering design technique. In contrast to many others, it can be applied
systematically even though plant parameter variations are large and rapld
Controller design is based on Liapunov's '"direct method." It results in
control action which guarantees that the plant output approaches the output of
a model reference. The model is such that its output for a given reference
input is the desired plant output. Information required for design is a
knowledge of the plant equations, the form of its nonlinearities, and the
bounds on its parameter variations. It is usually necessary to assume that
the control signal magnitude is unconstrained.

Problems entailed in practical application of the synthesis technique
are investigated, and some solutions are found. Among the most serious
problems are plant gain saturations, transducer noise, and disturbance inputs.

Methods are developed which allow the technique to be used for a class
of plants with soft saturation gain characteristics, under any operating
conditions, and for plants with hard saturation gain characteristics with
some restrictions on operating conditions.

Though transducer noise cannot be eliminated, exact and approximate
techniques are developed which substantially reduce its undesirable effects
on system performance. The former include techniques which obviate the use
of higher-order plant output derivatives in generating the control signal.
One of these, called the reduction-of-order technique, allows design to be
based on a lower-order equatlon than the plant equation. It is applicable to
linear plants with slowly varying parameters. The approximate techniques are
based on approximating system equations by neglecting instrument dynamics,
and using approx1mate values for certain signals and controller parameters.
Designs using the approximate techniques yield acceptable performance if
initial conditions, and the magnitude and power spectral density of input
signals are suitably restricted.

3 .
This dissertation was submitted in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy at the University of Connecticut.
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It is shown that the synthesis technique does not lend itself to de-
signing for a specific disturbance response, but under certain conditions
disturbance rejection can be guaranteed. However, if transducer noise is
present, this guarantee of disturbance rejection is at the expense of an
increased noise level into the plant.

An extension of the technique is introduced which allows designing for
a specified convergence time, i.e. the time required for the plant output to
reach that of the model if the system is started with different initial con-
ditions for each. It is shown that results pertaining to convergence time
design apply as well to the design of a class of quasi optimal systems.
Systems designed using these results are shown to achieve performance closer
to the true optimal than those designed using a previously reported technique.

The techniques developed in the report, shown to be effective by computer

simulation, enhance the utility of the synthesis procedure in practical con-
trol problems.

xii:
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CHAPTER I
INTRODUCTION
Statement of the Problem (1.1.1)

Modern day plants, such as high-speed aircraft and missiles, operate’'in
an extremely wide range of environmental conditions. As a result, plant
parameters undergo large and rapid variations during operation. Control
systems for these plants are required, but in some cases design techniques
used in the past are inadequate for such systems because of the nature of the
parameter variations.

"Classical" feedback techniques for linear systems, sometimes called
passive adaptive techniquesl“, may not be applicable if parameter variations
are either too large or too rapid or both. An approach to solving the control

problem for plants with large parameter variation is the use of so called

. : . 2- . .
active self-adaptive techniques 7. In this approach, certain controller
parameters are adjusted to compensate for changes in plant parameters.

Though successfully applied to the large parameter variation problems’u’a,

these techniques have several disadvantages. First, it is often difficult,
if not impossible, to analytically determine the stability properties of the

. 9,10 . . . - .
adaptive loop »1 . Next, plant identification schemes requiring complicated

instrumentation are necessary. And finally, instrument noise limits appli-
cation of the technique to plants with relatively slow parameter variations

The controller synthesis procedure developed in this report has
been shown to apply to linear plants with large and rapid parameter vari-

. . . . by
ationle’ls, and to nonlinear rapidly time varying plants as welll ’15. The

procedure is based on Liapunov's 'direct method". Prior to its introduction,
there were no design techniques suitable for plants with rapid parameter
variations, and no systematic procedures for the design of controllers for
nonlinear plants. Thus, this technique helps to fill a very definite gap in
control system theory.

K2

k)
Superscript numbers in text refer to references listed in Bibliography.



Consideration is restricted to controller design for single-input,
single-output plants as shown in figure 1-1. The design technique is +
generally valid only if the control signal magnitude is unconstrained. The
only information required for design, besides the knowledge of the differen-
tial equations describing plant behavior is the form of the nonlinearites
and the bounds on the parameter variations. The design technique yields a
nonlinear controller which insures that the plant states approach the states
of the model reference. The model is stable, and generally of the same order
as the plant. Its behavior is governed by a linear, constant coefficient
differential equation, and its output is the desired plant output.

Nonlinear compensation schemes are not new, there being many instances

of such schemes reported in the literaturels—lg. However, the design tech-

nique for the nonlinear controller being considered here has an important
advantage over many of those cited. It is systematic, whereas many of the
others are of a cut and try nature. In this technique, design is carried
out in the time domain. The desired dynamic performance of the plant is
achieved through specifications on the model. The form of the nonlinear
controller is in turn completely specified by the relatively straightforward
design procedure. In contrast, by other techniques, design is performed in
the frequency domain and it is difficult at best to interpret requirements
on the nonlinear compensating element in terms of performance speci-

fications20

A major objective in this report has been to help fill the gap referred
to above in practice as well as in theory, i.e. to develop the synthesis
technique into one of practical engineering significance which may be applied
successfully to design of controllers for the class of plants described. The
extent to which this objective is achieved is described below.

The synthesis technique is generalized to include plants with types of
nonlinearities commonly occurring in practice, It could not be made generally
applicable to plants with a hard saturation gain, but it is shown that a
suitable design for such plants may be found for a limited range of operating
conditions.

An equation to design for a specified convergence time is derived for a
second-order plant. Though similar results are not obtained for higher-order
plants due to the complexity of the algebraic problem involved, it is shown
how insight obtained from solution of the second-order problem is useful in
decreasing convergence time for a third-order plant. Results obtained for
convergence time design in the second-order case are shown to be directly
applicable to design of quasi time optimal systems. When applied to one
such system and compared to a design using previously existing techniques,
the improvement in speed of response was on the order of two to one.

Transducer noise can lead to an excessive noise level into the plant,
Several very effective techniques are developed for reducing this noise level,
These techniques are based on deemphasizing or entirely eliminating higher
derivatives of the plant output in the control signal. An additional
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technique for reducing noise power into the plant, based on lowering the gain ,
in part of the control signal, may be employed at the expense of accuracy
in tracking low level reference inputs.

.

Problems arising from neglecting instrument dynamics in the design of a
controller for pitch axis stability augmentation of the X-15 manned re-entry
vehicle are studied. With far out complex instrument poles neglected in
design, an instability can be excited by any combination of initial con-
ditions, reference input, and disturbance signals that is too large. The
reason for this is that the closed loop system gain is a nonlinear function
of these signals. However, it is shown that an adequate design can always
be achieved if linear compensating networks are used to move the neglected
poles far enough to the left in the complex s plane. Other techniques to
help minimize this stability problem are also presented. Their use requires
that some accuracy be sacrificed in tracking low level or rapidly varying
reference inputs.

Before the development of the synthesis technique is presented, some
brief comments pertaining to the "direct method" and control system synthesis
techniques based on it are made in the following section. The way in which
the report is organized is discussed in section 1.3.1.

Liapunov's "Direct Method" and its Application to

Control System Synthesis (1.2.1)

Alexander Mikhailov Liapunov was a Russian mathematician who presented
a conceptually new approach to the theory of stability of dynamic systems.
His work, published in a Russian journal in 1892, was later translated to

French in 1807, and reprinted in America in 194921. Two approaches to the

stability problem were taken by Liapunov, one quantitative and the other
qualitative, referred to as the "first method" and the "second" or "direct

method" " respectively. In the "first method," the study of stability
proceeds from an explicit solution of the equations of motion for the system.
However, it is the '"direct method" which offers the more general and powerful
appreach to the stability problem, and in fact, ". . . . has achieved

virtual preeminence in the Soviet Union as the principle mathematical tool

in tackling linear and nonlinear stability problems of the most varied type,

particularly in the theory of control systems."22
The '"direct method" considers the stability of differential equations

when the form of the equation is known, but not explicit solutions. It is
actually a qualitative approach to the stability problem rather than a

"Appendix A includes definitions and theorems required for an understanding
of the "direct method."



systematic method. Though qualitative, an ingenious user of the approach is
able to gain much useful knowledge about the stability of the dynamical
system under investigation. In the approach, a "fictitious" energy function
is employed. This function, named a "Liapunov function,”" plays a role
similar to that of the true energy function of a stable physical system, i.e,
it assumes its minimum value at the equilibrium state, and its time rate of
change is negative for all possible states of the system except the equi-

librium, where it is zero.

Though the literature is replete with material involving the "direct
method," little of it is directed toward the synthesis of control systems.
Much emphasis has been placed on analysis of stability problems and the
search for Liapunov functions to use in such problems. Works dealing

explicitly with the synthesis problem include those by Basszs, Graysole’ 13,

4 .
Johnson2 ’25, Nah126, and the author 14,15‘ Of these all but references 12,

13, 14, and 15 employ the "direct method" to design optimum or quasi-optimum
control systems. Grayson and the author use the "direct method" in the
design of controllers which force linear or nonlinear time varying plants to
behave in a desired manner.

Optimum design of systems has received considerable impetus of late

largely due to the pioneering works of Pontryagin et al.,27 and Bellman28.
Bass first suggested a merger of the "direct method" and optimization theory.
A detailed presentation of his utilization of the "direct method" in
achieving a quasi optimum control system design is also included in refer-
ence 22. His design was restricted to linear time invariant plants with the
control variables subject to magnitude constraints. Though the method of
design does not yield a true optimum, it has the advantage of leading to a
system in which only linear feedback preceeds a simple switching type non-
linearity, and one which is guaranteed to be stable. Johnson extends this
method by generalizing the cost function, and treats the quasi time optimal,
quasi fuel optimal and quasi energy optimal problems in detail. Nahi
presents a method of design which leads to true time optimal systems for a
certain class of problems.

Grayson employed the "direct method" in a design context for the control
of linear plants with large, rapid and bounded parameter variations. A model
reference is employed and the design leads to a nonlinear controller which
is not objectionably complex, a charge sometimes levelled at active adaptive
systems. Though not related to the optimization problem, this design is
roughly speaking, an outgrowth of the Bass design. In this case, however,
the control variable is unconstrained and has a magnitude which is a function
of the size of the parameter variations. The model is used to give the
system a reference for desired plant behavior. The difference between the
plant and model outputs is defined as the error. A vector differential
equation in the error and its derivatives is obtained by subtracting the
plant equation from the model equation. Then a quadratic form Liapunov
Function of the error states is formed. The time derivative of this Liapunov
Function is maint ° 1 negative definite by selecting the control variable
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to have sufficient magnitude and the correct sign. Consequently, plant states
are forced to approach those of the model. Though Grayson's work is theo- *
retically appealing, it fails to treat the engineering design problems which
arise in practice such as plant nonlinearities, transducer noise, dis-
turbances, instrument dynamics, and design for a specified convergence time.
These problems are dealt with in this report.

Organization of Report (1.3.1)

Chapter II, sections 2.1.1 through 2.2.3, includes a statement of the
general problem and the controller design procedure for linear time-varying
plants. This material is based on the technique given in references 12 and
13, but modifications are introduced which make it more attractive from an
engineering point of view. The modifications make it possible to avoid
impulses in the control signal in plants with zeroes, and also to reduce the
gains required in the control signal. The advantages attendant to these
modifications are examined in section 2.2.2 by comparison to the previously
reported technique. A modification of the technique necessary for plants
without integrators is introduced in section 2.2.3. Sections 2.3.1 through
2.3.3 treat the extension of the controller design technique to include a
wide class of nonlinear plants. Of particular importance in this category
is the problem of gain saturation exhibited to some degree by all physical
plants. The technique can sometimes be applied to nonlinear plants even
though the exact form of the nonlinearity is not known. This can be done if
a bound on the argument of the nonlinear function can be determined from
physical considerations. In these cases it is only necessary to know that
the nonlinearity lies within certain bounds. Since this is often the case
in physical problems, this aspect of the design technique is particularly
appealing.

In section 2.3.3 several examples dealing with the application of the
design technique to nonlinear plants are given. In section 2.4.1 the problems
of disturbance inputs and transducer noise are examined from a theoretical
viewpoint. There it is shown that generally the method does not lend itself
to designing for a specified disturbance response, but under certain con-
ditions disturbance rejection can be guaranteed. The interrelationship
between disturbance rejection and transducer noise is discussed, and a full
treatment of this problem from an engineering viewpoint in included in
Chapter V.

Chapter III introduces a technique for including convergence time as
part of the design problem. The close relationship between the convergence
time problem and the quasi time optimal control problem is discussed. A
change in the definition of quasi optimal from that given in reference 25 is
introduced. It is shown that a design for a quasi time optimal system based
on the revised definition results in performance closer to the true time
optimal than the design based on the original definition.



- In Chapter IV and V an investigation is made into the design problems
arising due to transducer noise and instrument dynamics. Several techniques
are developed in IV for eliminating plant state signals from the control law.
By such elimination, especially of higher order plant states, those mast
corrupted by noise, the problems associated with transducer noise can be
reduced. In section 4.3.1 it is shown how the model matrix can be manipu-
lated to aid in the noise reduction problem. Section 4.5.1 deals with the
very powerful reduction-of-order technique applicable to linear, slowly time
varying plants with zerces. A theorem pertaining to the control of such
plants is given in section 4.5.1. The reduction-of-order technique is an
ideal solution to the transducer noise problem in that it allows controller
design to proceed from a lower order description of the plant, thereby
avoiding the need for some of the higher-order plant states completely. In
section 4.6.1 the extension of the reduction-of-order technique to plants
without zeroes is considered.

In Chapter V, the reduction-of-order technique is applied to an
engineering problem, the design of a controller for pitch axis stability
augmentation of the X-15 manned re-entry vehicle, which has parameter
variations on the order of a thousand to one. The advantages of the design
using the reduction-of-order technique are brought out through a comparison
with a design which does not use it. An extensive analog computer study of
transducer noise, disturbance response, and instrument dynamics problems is
made. Through this study, design difficulties are clarified and some so-
lutions to these problems are obtained.



CHAPTER II
CONTROLLER SYNTHESIS TECHNIQUE
The General Problem (2.1.1)

The controller synthesis technique presented in this report is applicable
to single input, single output plants as shown in figure 1-1 which can be de-
scribed by the set of n first order differential equations of the form

ii =%, (i =1, 2,0....n-1) (2-1)

1 1
f(xl, XgeeoX s U, U ,...um, r ..t t)

X
it

or the equivalent vector differential equation form
x = Ax + B(u + 1)+ £(x, u, r, t) (2-2)

where r is the reference input, u the control signal, Xs the plant output,
and X 41 the ith time derivative of Xy The sum of u and r forms the single
input signal to the plant. Superscripts on u and r denote derivatives with
respect to time. The presence of these derivatives allows for the possibility
of zeroes in the transfer function representation of the plant. Unknown
parameter variations prohibit use of a transformation to remove the zeroes.
From physical considerations, m < n. The first two terms on the right hand
side of (2-2) include all linear terms in X, U, and r. The matrices A and B
are nxn whose elements, in general, may be time varying in an unknown fashion
within known, finite bounds. The function f includes all nonlinear terms in
X, U, and r. Equations (2-1) and (2-2) represent the open loop plant un-
modified by external linear feedback. Reasons for introducing linear feed-
back prior to generating the control signal, u, with the nonlinear controller
will be discussed subsequently.



The form of (2-1) leads to an A matrix of the form

)
-
o
N

A= : : : (2-2-a)
. 0 o) 1
Lfl a, - . . aIL

and a B matrix, all of whose elements are zero except for those in the last
rOW,

B = (2-2-b)

The importance of the form of A and B to the design procedure will
become evident in the discussion which follows.

The problem to be considered is under what conditions the plant of (2-2)
can be made to behave like a linear model reference described by the vector
differential equation

= AX,+Br (2-3)
o—

where X, is a column n vector with the model output and its first n-1 time
derivatives as its components, AO is a stable nxn constant matrix of the same
form as A, and Bo is an nxn constant matrix of the same form as B. The
elements of the last rows of AO and Bo are a . and bOj respectively, where i

and j take on values from i through n. The reference input r is as defined
for (2-1) and (2-2).
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The problem as it relates to linear time varying plants 1s treated first;
and then plants with various forms of nonlinearities are considered. .

Linear Time-Varying Plants (2.2.1)

For a linear time-varying plant, f = 0 in (2-2). Let the A and B
matrices be separated into constant and time varying parts as follows:

3>
1}

A+ AA(Y) (2-4-a)

s
]

BO + AB(t) (2-4-b)
where Ao and Bo are defined as in (2-3)

It follows from these definitions and what has been said previously about the
forms of A, B, Ao’ and Bo that AA(t) and AB(t) have all zero elements except

for those in their last rows. Let these elements be denoted by o and Bi

- a_. and Bi =b, - b

where a, = a, .
1 i oi i oi

The controller design technique proceeds by defining an error vector
differential equation as the difference between (2-3) and (2-2), i.e.

e = Ae - (Bu + ABr + AAx) (2-5)
w— o—— — — —

where e = xd

- X, the error vector.

When u = r = x = 0, (2-5) reduces to the homogeneous equation

e=Ae (2-6)

Since AO is stable by assumption, then a Liapunov function of quadratic form

exists for (2-6), and its equilibrium, e = 0, is asymptotically stable in the
whole. Let this Liapunov function be

V(e) = e 'Pe (2-7)

10



where P is a positive definite matrix to be determined. The time derivative

‘of, (2-7) is

v(e) = g?(AzP + PA e (2-8)

ATP + PA = -Q (2-9)
(o] o] )

where Q is chosen to be a symmetric positive definite matrix. Criteria for
selecting the elements of the Q matrix are considered in Chapters III and 1V
relative to convergence time and the transducer noise reduction problem. At
this time, it suffices to arbitrarily chose Q as the identity matrix, I, as
is usually done for convenience in the literature. Because AO is stable, the

P matrix found from the solution of (2-9) will be positive definite, and

symmetric since Q is symmetric.

when the terms in parenthesis on the right hand side of (2-5) are not
zero, an additional term appears in the time derivative of (2-7), such that

i

‘.l(g, u, r, X, t) = -gz_TQg - QETP(B5+ ABr + AAX) (2-10)

This form of V is a consequence of the fact that P is symmetric.

The control problem now reduces to determining when and how a control
vector, u, can be generated which will cause the inequality

e'P(Bu + ABr + AAx) 2 O (2-11)

to be satisfied. If (2-11) can be satisfied by a suitable choice of u, then
(2-5) will be asymptotically stable in the whole under all variations of the
parameters, i.e. the plant will be forced to track the model. The basis for
choosing u is considered in detail below. In Appendix A is a discussion
pertaining to the mathematical justification of the synthesis technique
developed here.

To examine this problem in more detail, it is necessary to write (2-11)
in expanded form, which is

11



m . . n
(Zop,e) | Z(b, w+B, v+ I ax| >0 (2-12)
j=1 ind 520 j+1 J+1 k=1 Kk =

where 15 is an element of the last column of the P matrix. This form, which
will be"referred to as the '"factored" form, is a consequence of the fact that
B, AA, and AB have nonzero elements in their last rows only. The term
"factored" refers to the fact that all of the terms involving components of
u, r, and X, are multiplied by the same factor, the summation in Pin®se It

is this fact which makes it possible to generate a u which will cause (2-11)
to be satisfied. Thus, one condition required for generating u, is that A,
B, Ao’ and BO have the forms previously specified. Before discussing how u

is generated, further consideration is given to other conditions which must
be met.

In (2-12) Pin and bm+ are factored yielding

1

n o m-1 3 m . n
p.. b (z p. e.) u+U(m-1) £ c, . u'+Z 4 r+3I gx > 0 (2-13)
In m+l =1 i 3=0 J+1 020 2+1 k=1 kK k
where
o = oin g = X
in pln k bm+1
b,
Ciy1 = L 1 for (m-1) > 0
J m+1 U(m-1) =
0 for (m-1) <0
a BQ,+l
2+l m+1

12



‘ It is shown in Appendix B that Pin > 0 for a diagonal Q matrix. A

condition on b is evident from (2-13), i.e. b # 0. This is required
m+l m+l

in order that c, .,
j+1

greater than or less than zero.

dj+l’ and B be finite. The coefficient bm+l may be

Consider the case when bm+l > 0. Then the control signal must be such

that (2-13) is non negative. A control law, from which a control signal can
be generated, which keeps (2-13) > O will be given, and the reason for the
choice will follow. The control law is

o m-1 j m ¢ n
W= [Um-1) £ e, o) lud] o+ la, | |27+ = lg | Ix |] sign vy (2-1k)
4=0 J+l'm 2=0 241 'm k=1 k'm'"k
n
where subscript m denotes maximum value and y = z pinei' Hereafter, y will
i=1

be referred to as the switching function.

The rationale for choosing this control law is that in causes u" to have
a magnitude which is greater than or equal to the magnitude of the sum of all
of the other terms in the square brackets of (2-13) for all variations of the
parameters c, d, and g. This being so, the sign of the square bracket term

is determined by the sign of u". By giving u" the sign of y, (2-13) is made
greater than or equal to zero.

The complete u vector, and hence the control signal u, can be generated

by successive integrations of u". The control signal so generated will force
the plant output to track the model output. In the control law given by
(2-14), the terms within the braces will be referred to as the magnitude
function, M, since it is composed of magnitudes of variables only, and also
it determines the magnitude of u™. The restriction previously imposed that
the elements of the A and B matrices be finite is required in order that the
coefficients in M be finite.

If bm+l < 0, then u™ would be chosen of opposite sign from that of

(2-14). 1If bm varied between positive and negative values, then a re-

+1
quirement of the system would be an jdentification scheme to determine its

sign so that u™ could be generated accordingly. In order to avoid this re-
quirement, it is assumed throughout that bm+l > 0.

13
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Flligge-Lotz = has shown that for equations which have sign functions as
forcing terms, solutions may not always exist. TFor this reason, the dis-
continuous sign function is replaced by a continuous function, this being

either the saturation function22’l2 or the hyperbolic tangent25 in previously

reported work. The saturation function is defined as

7

+1 for Yy > 1/k
sat ky = ky for -1/k gy g 1/k (2-15)

-1 for vy < -1/k

where k > 0. It can be made to approximate the sign function as closely as
desired by choosing k large enough. An investigation of the results of
Fligge-Lotz shows that solutions do exist in some cases. For example, in a
plant described by

X + ak + bx = Csign(x + dx) (2-16)

in which a > 0 and b > 0, solutions exist if C > 0 and 4 > O which bring the
system to one or the other of the '"rest points," + C/b, in figure 2-1. Such
solutions are unsatisfactory, however, if the desired final state is
x=%X=0., When C < 0 and d > O, there is the possibility that the tra-
jectory intersects the switching line at two successive points on the same

side of the origin such as points P2 and P3 in figure 2-1. The second point,

P3, is called an "end point,” and motion is undefined beyond such a point

because motion cannot continue along either of the dashed curves P_A or P.B

3 3
since the former pertains only for x + dx > O and the latter for x + dx < O.
A phase plane analysis using isoclines shows that "end points" do not result
for C > 0 and d > 0. Because neither the 'rest points' nor the "end point"
situation is desirable, both are avoided by replacing the sign function with
the saturation function of (2-15) throughout the remainder of this report.

Use of the saturation function avoids the problems discussed above, but
it introduces another not previosuly discussed in the literature, i.e.
asymptotic stability of (2-5) is no longer assured in the region Iyl < 1/k.
The reason for this is that Mky may not have sufficient magnitude to maintain
(2-13) > 0. There are two practical consequences of this fact. First,
tracklng of the model by the plant may be poor for low amplitude reference
inputs, r. A full discussion of this problem is included in 5.3.2. Second,
limit cycles or constant steady state errors may develop near e = 0. It is
shown. in Appendix C that such limit cycles or steady state errors can be
confined to an arbitrarily small region about e = 0 by making k large enough.

1
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Figure 2-1: Trajectory With an End Point
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For a given k, a conservative bound on the size of the region is established
in terms of the components of r and Xq Such a region for the second order -

case is shown as the cross hatched area of figure 2-2. It is defined by the
intersection of the regions |y| < 1/k and R(k). The latter region is defined
in Appendix C.

Comparison to Previously Reported Technique (2.2.2)

The controller design technique for linear time-varying plants given in
section 2.2.1 is quite similar to that presented in reference 12. However,
several modifications can be introduced which should be pointed out. These
modifications offer several advantages from an engineering design viewpoint.

The first modification is achieved by factoring b » as was done in
(2-13), and by defining coefficients c, d, and g. If Some relationship
exists and is known between numerators and denominators of these coefficients,
it may be used to advantage in selecting smaller values for the coefficients
of (2-14). This leads to lower saturation level requirements in the con-
troller amplifiers. For example, |c.+l|max should be chosen as I(bj+l)/
rather than |(b,

(bm+l)|max j+l)|max/1(bm+l)|min' In general it is sufficient

to make the magnitude of u” equal to the magnitude of the sum of all terms in
the square brackets of (2-13) other than itself. All available information

should be used to reduce the magnitude of u" to this sufficient value.

Another modification applies to plants in which m # 0, i.e. derivatives
of input signals appear in the equations. In this situation, the reference
input r is not to be used as an input to the plant, but only to the model
reference. Only the control signal u is to be applied to the plant input.
In addition, the model should be such that its equation does not include
derivatives of r. If both these conditions are satisfied, then derivatives
of r do not appear in (2-14). This is especially important if r contains
step functions for then impulses are avoided in generating u™. If r is not
an input to the plant, then 4Br of (2-10) and (2-11) is replaced by Bog, and

the coefficients of rJ in (2-12), (2-13), and (2-14) must be changed
accordingly.

Plants Without Pure Integrators (2.2.3)

If m = 0 in (2-1), and if the plant has no pure integrator, i.e. a; £0

in the A matrix, a problem may arise due to the nature of the control signal
given by (2-14). This problem is most easily examined by considering the
reference input to be a unit step. As e approaches zero, u does too. How-
ever, since the plant has no pure integrator, a steady state input of unknown

16
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magnitude is required to maintain x, =1 in the steady state. This situation

will lead to limit cycling or a constant steady state error. Note that this

problem does not exist if m # 0, for then u” goes to zero when e does, but a

steady state value of u can develop which will maintain Xy = 1.

In order to circumvent this problem, the following procedure is suggested
Rather than have only u as the plant input signal, let the input be

u + Qg udt. With this input to the plant, the design procedure is unchanged.

The only modification to be made is that the version of (2-14) for this case
becomes

n

_ t
R N A R R

max

With the integral of u included as an input, a steady state value can develop

at the input to the plant which maintains X, = 1.

Nonlinearities In The Feedback Path (2.3.1)

If £ # 0 in (2-2), then the design procedure as given for linear time
varying plants must be modified somewhat in a way which depends on whether
or not the nonlinear element is in the forward path or the feedback path.
The two possibilities are depicted in figure 2-3. In either case, there is
a requirement that f be a column vector with all components zero except the
last, in erder to obtain the "factored" form of (2-12).

An important distinction between the two cases is the amount of infor-
mation required about the nonlinearity. When the nonlinearity is in the
feedback path, only bounds on f are required. If it is in the forward path,
and m # 0, it is necessary to know bounds on partial derivatives of the
nonlinear function with respect to all of its arguments. First, consideration
is restricted to the case f = f(x, t), i.e. the nonlinearity is in the feed-
back path. In this situation, the error equation, analogous to (2-5) for
the linear time varying case, becomes

e = A

e=Age- [Bu+ABr+AAx+f(x,t)] (2-18)

18
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The procedure developed from (2-7) through (2-11) is again followed, so that *
now a u must be found such that .

E?P [Bu+ABr+AAx+f(x,t)] > 0 (2-19)

Because f has all components zero except that in the last row, (2-19) expands

to

n m-1 j m 3
p..b .y [w+U(m-1) £ e, u+I 4d,.r
1n m+l jzo 9L o M
(2-20)
n
+k£1 gkxk+h(xl,x2,...xn,t)/bm+l] >0

where h, the component of the last row of the f vector, is a nonlinear time
varying function. It is seen that (2-20) is in "factored" form as was

(2-13).

Therefore, with the same restrictions applied to the parameters as

applied in the linear time varying case, it is again possible to choose

u" as in (2-1u4) provided the form of h is known and coefficients in h are
bounded functions of time. For example, if

2
h = kl(t)xl +k2(t)xlx2 (2-21-a)

the following additional terms must be included in the braces of (2-14):

Ikl(t)/b x12+|k2(t)/bm+l|m1x x| (2-21-b)

m+l|m

where subscript m denotes maximum value.
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From (2-21-b) it is seen that the requirements |kl(t)] < = and |k2(t)| <

must be imposed in order that it be possible to generate u" with finite gain
amplifiers. It is impor.ant to note that the exact form of h need not always
be known. This is discussed in relation to example 2-1.

Nonlinearities In The Forward Path (2.3.2)

The following discussion pertains to nonlinearities in the forward path
which precede the plant as shown in figure 2-3b. In the figure let

n
y = utr+ I 6.X (2-22)

where Gi's are constants.

Again it is necessary to assume that the column vector f has all zero com-
ponents except the last in order that the "factored" form result. This last
component is designated as h(y, t). In contrast to the previous case,
knowledge about partial derivatives of h(y, t) with respect to y and t are
required here if m # 0. Therefore, attention is directed to the case when
m= 0, i.e. no derivatives of z appear in the equations. It is assumed that
h can be expressed as

h(y, t) = (h(y, t)/y)y = (hiy,; t)/y) (u+ y") (2-23)

where y' =y - u

If m # O, and for discussion let m = 1, then it would be required that an
expression of the form

éﬁil;il = EE-QX-+ 3h _ éﬁéﬁX{ﬁ+§') + 2h (2-23-2a)

could be written where u + &‘ = &. In order to derive the control law it
would be necessary to know bounds on both partial derivatives. In addition,

(9h/3y)/y would have to be of one sign (analogous to bm+l in the control
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laws for previous cases). Since this is much more information than has been
assumed known about the plant, this case is not pursued further. ’

The procedure used leading to (2-11) is followed here with m = O to give
the analogous equation for this case which is

e'p [ABr+aAx+£(y,t)] > 0 (2-24)

The scalar form of (2-2u4) is

nooa, Blr
1 —— — -
p,,(h/¥)y [uty +i§1 n7y X1 * h/y] >0 (2-25)
In (2-25) h/y has replaced bm+l which appeared in (2-13) and (2-20).

Therefore, the restrictions placed on bm must also be placed on h/y, i.e.

+1
h(y, t)/y > O uniformly in t. Also the coefficients of the variables forming
y' must be bounded. If the form of h is known as well as its maximum ex-
cursion with time, then u can be generated directly to satisfy (2-25) in the
same manner indicated for generating it in (2-14). The general form of u
will not be written out since it is quite obvious from what has been done
previously, and also an example of this type is worked in the following
section.

The restriction that h(y, t)/y > O rules out plants with a hard satu-
ration gain characteristic. Since this is a common form of nonlinearity, it
is well to consider what can be said about stability in such cases. In
4,2.2 it is shown that it is sometimes possible to determine an upper bound
U, xd) such that |u| < U. Thus, for a given plant saturation level, the

model and reference input can be adjusted so that |u| does not exceed this
level.

Generally it is not reasonable to expect a plant with a hard saturation
gain to track the model since the magnitude of the input signal required may
exceed the saturation level. It is important in such cases to consider the
stability of the plant without regard to its ability to track.
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A condition equivalent to hard saturation is that there is a magnitude
constraint on u equal to the saturation level, S, i.e.

lul <'s (2-26)
Since tracking properties are not under consideration, it is assumed that

= 0.

]
)C'

r
(2-27)

Thus, e = -Xx

and stability can be investigated by substituting (2-26) and (2-27) into
(2-25) to give

n n a

P, (B/¥)y [u-iz1 siei-iil w7y e.] >0 (2-28)

From this it is seen that stability can only be assured in the region where

o+ ——%—ei)] <8 (2-29)

N~ B
—
[e]
14

i=1

This region may not be easy to determine in view of the fact that the pa-
rameters are time varying, but one always exists around the origin e = O.

If the parameters are slowly varying so that a transfer function repre-
sentation of the linear part of the plant is wvalid, then a describing
function analysis may be applicable if the control signal is generated as

u = S sat kY (2—30)
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rather than as the product of the magnitude function and the saturation
function. This case is shown in figure 2-4 where P(s) is the transfer ’
function for the linear part of the plant. If the product of P(s) and the
feedback transfer function has suitable low pass characteristics, then a
describing function analysis can be applied. Such an analysis, of course,

is complicated by the parameter variations. 1In spite of this, it may stlll
be possible to determine stability over the range of these variations.

Several Examples Using Nonlinear Plants (2.3.3)

To fix ideas, some examples involving nonlinear plants are worked out
in detail. Examples used are taken from references 14 and 15. An example
u51ng a linear plant is taken in Chapter IV in connection with the transducer
noise problem. The operation of the controller design for the nonlinear
plants considered was checked by a simulation of the system either on an
Electronic Associates Inc. PACE 231-R analog computer or the IBM 7040 digital
computer.

In order to permit clarification of ideas while avoiding unnecessary
complications all examples are taken as plants representable by second order
nonlinear and time varying differential equations. Since this is so, a
second order model reference suffices for all examples, and it is chosen to
be

(2-31)

5 e
I
»
+
(e

If the AO matrix defined by (2-31) is substituted into (2-9) and Q is

chosen as the identity matrix, then solution of (2-9) yields

5/4 1/k
P = (2-32)
1/k 3/8
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With P matrix elements determined, the switching function can be written, and
it is v

]
(1]

Y + 1.5e (2-33)

The P matrix and y function above are independent of the plant. Therefore,
they will be applicable in all examples which follow.

Example 2-1: This example and the one following deal with plants that
have nonlinearities in the feedback path. Accordingly, (2-20) is used in
each for deriving the control law.

Consider the plant shown in figure 2-5 which has a square law damping
characteristic. The vector differential equation describing this plant ‘is

e
It

I
+
o
3
2]
L

(2-34)

For this plant, m = 0, i.e. no differentiation of u or r is involved. Be-
cause of this, and also because of the fact that the plant has a pure
integrator, unity linear feedback of x is used, and r is made an input to
the plant The AA and AB matrices can be found from (2-31) and (2-34) to be

0 0 0 0
AA = ; AB = (2-35)
-(K-2) 2 (k-2) o0
From (2-34) it is seen that a. = b. - K and b = b, = K. The last term on
1 1 m+l 1

the right hand side of (2-34) is f. Relating this to (2-20) shows that
'h(x2, t) = a(t)x22. The bounds on parameter variations are taken as K >1
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and |a(t)] < 1. With the form of h and the bounds on parameter variations
known, application of the design technique is straight forward. The control-
law derived by applying (2-20) and (2-21-b) is

u = {|r—xl[ + 2|x2| +x 2] satk vy (2-36)

2

Since m = 0, no integrations are required, and the control law as given by
(2-36) generates the control signal, u, directly. A plot of e and u versus
time is shown in figure 2-6. These results were obtained using a digital
computer simulation with a(t) = sint, »(t) = sin0.1t and k = 20. The error,
in general quite small, has the largest percentage value near t = o where X4
is small.

It should be noted that if physical considerations allow an upper bound

for |x2| to be established, then x22 in (2-36) can be replaced by B]x2|(see

figure 2-5b). In some instances, this procedure may significantly simplify
instrumentation by avoiding a complicated nonlinear function generator. It

is also of importance in the practical case where the damping is approximately
square law rather than an exact square law. Thus, any nonlinearity with
magnitude less than le2| for IXQ? < |X2|max can be handled by using B]x2|

in (2-36) rather than the nonlinear function itself.
Example 2-2: 1In this example, as in example 2-1, the nonlinearity is in

the feedback path. Here, however, the plant, shown in figure 2-7 and de-
scribed by equation (2-37) below has no integrator.

(2-37)

B
[
1=
+
—
d
I,
ot
+

In (2-37), ¢ > 0, ¢ = 0, and ¢ <0 corresponds to a hard spring, linear spring,
and soft spring respectively. Since the plant has no integrator, r is not
used as an input, and the technique discussed in 2.3.1 is employed as
indicated by the second term on the right hand side of (2-37) which involves
the integral of u rather than u. Employing (2-31) and (2-37) leads to
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0 0

(2-v) (2-a)

Since r is not an input to the plant, Bo replaces AB in the design equations.

With parameters taken as a(t) = sint, |b| < 1, |c| < 1, and K > 1 the control
law becomes

t
u = [2]r-xl| + |x1| + 3|x2! + |xl|3 + |{)udt|] satk vy (2-38)

Digital computer results for this example are shown in figure 2-8 for
r = U(t) and k = 20. The error is seen to be very small for all time.

Example 2-3: The plant depicted in figure 2-9 has a nonlinearity in
the forward path, a pure integrator, and a pcle in the right half plane. Be-
cause the integrator is present and there are no zeroes, unity linear feed-
back is employed, and r is used as an input to the plant. Linear rate feed-
back is introduced which stabilizes the plant for small inputs, but the
linearly compensated plant, without benefit of the nonlinear controller, is
conditionally stable due to its nonlinear gain and right half plane pole.
For step inputs greater than 2 volts, the output increases without bound.
The function of the nonlinear controller is to circumvent the conditional
stability problem, and cause the linearly compensated plant to follow the
model for any input.

The equation for the plant with linear feedback is

0 1 0
x = x + (2-39)
0 a(t) h(xl,xz,u,r)
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-

2

where the nonlinear term h is defined in figure 2-9, and |a(t)] < 1. Since
the nonlinearity is in the forward path, the method of section 2.4.2 is used’
to derive the control law. There are no plant zeroes, som = 0. The
argument of the nonlinear function h is

y=r+u-x, - l.5x2 (2-40)

1

Since y involves a linear term in u, and since h(y)/y > O, the conditions
discussed in 2.4.2 are met and the technique can be applied directly to
obtain the control signal, u. Equation (2-25) for this problem becomes

2(r-xl)+(2+a)x
h/y

2

p,(0/y) v | wH(r-x -1.5x,) - >0 (2-L1)

1

where r - X - l.5x2 =y'

Utilizing (2-41) and the facts that Ih/ylmin = 1/5, and |a(t)| < 1 the contral

law becomes

u = [9|r-xl| + l3.5|x2|] satk y (2.k42)

where k = 200 was used in an analog computer simulation. Computer results
of controller operation are shown in figure 2-10 in the form of phase plane
trajectories. The variables d and d' are defined in figure 2-9.

The results show less than one percent error between plant and model
variables d' and d, and less than 2.5% error in the derivatives of these
variables. Trajectories shown are for a 4 volt step input, but similar
results were observed for inputs up to 10 volts. The system was stable for
any magnitude of input signal.
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Disturbances and Transducer Noise (2.4.1)

A representation of the problem with transducer noise and disturbance
inputs present is shown in figure 2-11. It would be a desirable adjunct to
the design technique to be able to design for a specific disturbance response.
However, as will be shown, this is not possible. The best that can be done
is to insure that Iec| is as small as desired. For disturbance inputs this

is a desirable result in that it implies disturbance rejection. TFor noise,
however, the implication is that the plant tends to track the noise, which
is undesirable.

For the purposes of this discussion, it can be assumed that the plant is
a linear time varying one without loss of generality. As is seen from
figure 2-11, the available signal z is not the true output but is corrupted
by disturbance and noise, i.e.

z=x+d+n (2-43)
where d = dl, n=m, and éi = di+l’ ﬁi = n fori=1,2,...n -1
The plant equation is

x = Ax + Bu (2-L4)
From (2-43)

x=z-d-n (2-45)

Substituting i from (2-45) and x from (2-43) into (2-u44) gives
z2=Az - A(d+1n) +Bu+d+n (2-u6)
Subtracting (2-46) from the model equation (2-3) gives

e =Ae -Bu+A(d+n)-d-n-AAz+Br (2-47)
¢ o— - - - = - o—
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d= disturbance
n= transducer noise
e¢.® corrupted error sigmal

Figure 2-11: System With Disturbance and Transducer
Noise Present
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The time derivative of

(o]

V(e ) = e "Pe (2-u8)
¢ <

is

: T T ..
V = -e, Qec—2ec P [BETA(Ef§)+§TE?AAETBOE] (2-49)

As a consequence of the specified form of the A matrix, terms in di and

n. for i = 1,2...n do not appear in the first D- 1 equations of (2-u46), i.e.

zZ. = Z, for i = 1,2,...n - 1. All the 4. and n., terms as well &s é and
i i+l 1 i n

ﬁn may appear in the equation for én' At least the expansion of (2-49) is

in "factored" form. However, since the terms referred to are not generally
measurable, appropriate terms to add to the magnitude function cannot be
generated. This problem can be overcome if bounds for these terms are known.
In this case, a constant D may be added to the magnitude function such that

n
D> |z ai(di+ni)+dﬁ+nn|max {(2-50)

i=1

Addition of D to M and generation of u" in the usual way guarantees that ‘ecl

can be made arbitrarily small. No control over the form of disturbance
response is possible, however, since the model is chosen for desired response
to the reference input. In conclusion, addition of D to M insures dis-
turbance rejection, but forces the plant to track transducer noise in the
process. The disadvantages of including a steady state term in the magnitude
function when transducer noise is present are discussed in Chapter V., Also
discussed there is the fact that the controller may have a disturbance
rejection capability without the constant term above included as part of the
magnitude function. This is a consequence of the sufficiency nature of
Liapunov's theorems. Whether or not to include the constant term must be
decided on the basis of factors present in the particular problem being
considered.
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CHAPTER III

CONVERGENCE TIME DESIGN AND ITS RELATION
TO THE QUASI TIME OPTIMAL PROBLEM

General Comments (3.1.1)

In starting systems with large initial errors, the question of con-
vergence time, i.e. the time for plant states to become equal to model states,
assume importance. This problem, previously considered only from the point
of view of analysis, is treated in a synthesis context in this chapter.

If the plant is tracking the model, control action is such that plant
and model outputs differ only slightly, and the difference is reduced to
zero quite rapidly. A detailed examination of convergence time in this
situation is not essential. However, in starting systems with a large
initial error, it would be desirable to know how design parameters can be
selected to reduce the error to zero within a specified time.

The convergence time problem dealt with here is in essence the quasi

. . . . . . . 25
time optimal problem which has received attention in the recent literature .

V¥ is the cost function for the latter problem. Because of this, results
obtainec are carried over and applied to the quasi time optimal problem. It
is shown that an improved quasi time optimal system can be achieved by using
these results. To demonstrate this quantitatively, techniques developed in
this thesis are applied to an example taken from reference 25.

Convergence Time (3.2.1)

In order to deal with convergence time quantitatively and to determine
an upper bound on its magnitude, a parameter n is defined as

n=min | - Vieor,u,x,t) ;e# 0 (3-1)
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From (3-1) it follows that

V(e,r,u,x,t) < - n V(e) (3-2)

This last equation can be solved to yield

V(e) < V(e ) & MEL) (3-3)
where
V(fg) = V(e t=to) (3-4)

From (3-3) it is seen that the parameter n is the reciprocal of the time
constant for (3-2). In order to minimize convergence time, the design should
be directed toward maximizing n. Because (3-2) is an inequality, the best
that can be achieved is an upper bound on convergence time, and not an exact
value.

Since V is a nonlinear, non algebraic function of u, the actual value of
n is extremely difficult to compute. To avoid this difficult computation,
the following quantities are defined:

v (e) 2 -sTQs > V(e,r,u,x,t) (3-5)
and
A VO(E)
oS | TV | = e# 2 (3-6)
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Since n is the ratio of two algebraic functions of the components of the

error vector, computing it is much easier than computing n. However, since
(3-6) is an inequality as well as (3-2), the bound on convergence time based
on n_ is even more conservative than that based on n.

If (3-6) is written as

N, = =g (3-7)

then it is clear that convergence time depends explicitly on the Q matrix
elements, and implicitly on Ao’ through the dependence of P on Ao (see

equation (2-9)). Thus, the problem of minimizing convergence time reduces to
the proper selection of the elements of the Q and AO matrices. As will be

seen below, this selection is generally not easy to make.
If one considers the analysis problem rather than the synthesis problem,

computation of a convervative bound on convergence time is relatively
straightforward. Methods are available for such computations, once Q and AO

have been chosen. One such method is based on the fact that a positive defi-
nite quadratic form is bounded above and below by the inequality

min X, (P) ||gj|2 j_g?P < max A, (P) ||e]l 2 (3-8)
i 1 i 1

where Ai(P) are the eigenvalues of P for i = 1, 2, ... n. These eigenvalues

are positive since P is a positive definite matrixso. The double vertical
lines on either side of e symbolize the Euclidian norm of e. A simple
estimate for n is obtained through use of (3-8). This is

min A

J(Q)
- . . =
nzng Z_E;;—r;rgy ; fori, j=1,2 ... n (3-9)

1
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Although (3-9) allows easy computation for n, and thus an upper bound on
convergence time, it does not afford an explicit relation from which design '
parameters can be chosen to yield a specified upper bound on convergence
time. It is not at all clear how this bound relates to the physical problem
since it derives from an arbitrary mathematical function.

The synthesis problem, i.e. designing to minimize convergence time, is
one of maximizing the minimum value of U To find explicit expressions for
doing this in terms of the elements of the Q and Ao matrices is not an easy

task. This problem is solved below for a second-order system. Though the
algebraic problem becomes too unwieldy for third and higher order systems,
insight can be gained from the results of the second-order case which is
useful in the higher-order problem.

Design for Convergence Time in Second-Order Plants (3.2.2)

In second-order plants, the algebraic problem of maximizing the minimum
value of "o is affected by the design parameters, it is expressed in terms of

these parameters as

e 2+ e,.2
_ $1%1 %% (
= 5 2 3-10)
P1181 *2P10818,%P508,

o

In (3-10) a diagonal Q matrix has been assumed with elements 1, and Qgp
If a second-order model is used with parameters a4y = KO and 350 T "85 then

solution of (2-9) for P yields the following elements of the P matrix

q a g
_ 0 11 o “11
P11 =5 () t—5f (3-11-a)
O (@] o]
q
- 11
O
q
Y q
Poy = e * 22 (3-11-c)
o0 2a
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With these equations for the P matrix elements substituted into (3-10), "o
becomes

(3-12)

12

q
11 .
The parameter B indicates the relative weighting of el2 and e22 in Vo(g).

where B =

To maximize the minimum value of ngs its minimum value is found first by
taking the derivatives of (3-12) with respect to e and €rs and setting these

derivatives equal to zero. Following this procedure with either variable
leads to the equation

e + :L-- ——— —~ Ba e.e,-— Be =0 (3-13)
o

Treating (3-13) as a quadratic in e and solving yields

e, = kle2 (3-14)

where




If (3-14) is substituted into (3-12) the result is

(k12+s)2Kan
Ny = 2 2. 2 (3-15)
(BKO +Ko+ao )kl +2aokl+l+BKo

All of the design parameters, i.e. Ko, as and B, are brought out explicitly
in (3-15). However, since N, is a function of three parameters, it is not an

easy task to maximize its minimum value by choice of these parameters. At
this point the assumption is made that

BKO << 1 (3-16)
Since Ko is dependent on the model used, it generally is not very much less
than one. Therefore, (3-16) implies that B << 1, i.e. less weighting is
given e, than e, in V(e). Use of (3-16) leads to the following simplifi-

1
cations

kl N l/aO (3-17-2a)
k) v+ Ba (3-17-b)

The value for kl given by (3-17-b) gives the minimum for Ny which is,

2
(l+BaO )2a BKO
2

2,2 2 (3-18)

(l+8ao +BK _+B & Ko(l+BKO)

If the model parameters are given in terms of the standard damping ratio,
natural frequency nomenclature for second-order systems, i.e.
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KO = Wy (3-19-a)
and
a =2 Eug (3-19-v)
then (3-18) becomes
(144 €% 8 w )4 £ 8w ) .
n_= 3-20
R R e I TCA S LN C IR I

This constitutes the design equation for convergence time for the second-order
system. From it can be seen that by keeping the model damping ratio constant,
the convergence time can be made as small as desired (no can be made as large

as desired) by increasing w, while keeping 8(u02 constant at a value which

satisfies (3-16).

It should be noted that there is no need to actually change the model
behavior to accomplish the desired result. For example, let the mcdel be
described by

X x +(K +a' = +a' -21
X +e X, (KO a ol)xd Kor a' 1%4 (3 )

With the model described in this way, n, can be increased by increasing a'ol.
The model behavior is as though a'ol were absent. However, the term a'olxd
must be included as an additional term in the magnitude function of the
control law. Clearly, the decreased convergence time is gained at the
expense of an increase in the control signal magnitude.
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The weighting of the error states in the V function can be interpreted
in terms of the switching line in the phase plane defined by the switching
function of (2-14). The equation for this line is

8

= - = o =2 -
2 T T Poo®y BHBK e (3-22)

Using (3-16) in (3-22) leads to

e, N -ae (3-23)

From (3-23) it is seen that the effect of choosing BK  to satisfy (3-16) is

to rotate the switching line toward the e, axis, thereby giving its slope the
maximum possible magnitude. The effect og this rotation in decreasing con-
vergence time is illustrated in figure 3-1. The implications of this
switching line rotation in the quasi time optimal problem is considered in
3.3.1.

Higher Order Plants (3.2.3)

The algebraic munipulation required .to arrive at (3-20) would be
extremely unwieldy for a third-order system and practically impossible for
systems of order higher than third. This being the case, an attempt is made
here to show how results derived for the second-order system may be carried
over to a third-order one. The arguments justifying this approach are
intuitive rather than analytical.

Since weighing higher order states less in the V function effected a
shorter convergence time in the second-order case; perhaps the same result
can be attained in the third-order case by the same means. For the third-
order case, this means deemphasizing acceleration and velocity terms in V.
Intuitively, one would expect that such a deemphasis should lead to a faster
transient. To test this intuitive notion, the transient response for the
error was compared using two different Q matrices and a plant described by
the equation
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Equation (3-24) is the vector form of the simplified short period approxi-

mation for the transfer function of the X-15 manned re-entry vehicles’31

with an integrator representing a hydraulic motor actuator. This plant is
considered again in Chapter V.

fp_———-iuitinl condition

4‘1
switchi 1line
- s

switching line rotated

for faster convergence
time.

Figure 3-1: Relation of Switching Line Slope to Convergence Time
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The desired behavior is given by the model equation

5.
]
(@]
O
o
»
+
e

(3-25)

o
oY

-1.2 -2.15 -l.B_J +1.2 0 0

The control law for the system given by (3-2u4) and (3-25) was derived
using two different Q matrices. These were

Ql (1,1,1) (3-26-a)

Q, (1,0.1,0.01) (3-26-b)

where the numbers in parenthesis are the values of the diagonal elements and
all other elements are zero.

The switching functions corresponding to each of these Q matrices are

Yy O.Mluel + l.23e2 + l.33e3 (3-27-a)

and

Y O.UflSel + O.u86e2 + 0.377e3 (3-27-b)

where Yy derives from Ql’ and Y, from Q2. It should be noted that further
reduction of P and A33 results in negligible additional decrease in co-

efficients of e, and ey from their values in (3-27-b). The transient response

for e, is shown in figure 3-2, Results in the figure are for initial con-

ditions e = 5, and e, = ey = 0. It is clear that the transient for Q2 is

considerably faster than for Q.. Thus, insight gained from the second-order
problem is useful and can be applied to the third-order case.
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Figure 3-2: Transient Responses For Third-Order System
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Relation to Quasi Time Optimal Control (3.3.1)

The results above relating to convergence time design relate as well to

2 . . ; .
some recent work 4,25 done in the application of the "direct method" to de-

sign of quasi time optimal systems. In the references cited, it is pointed
out that an advantage of such a design, though not pressing true time optimal
properties, is that asymptotlc stability of the overall system is assured.
Also, the system is quasi optimal accordlng to the following definition:
"Given a linear, statlonary plant x = AX + Bu and a rate of cost function

L (x, u, t) where L is independent of sign u , then the quasi optimal feed-

back control policy, uQ(x t) should minimize absolutely the modified cost

T
function K(x, u, t) = V(x u) + L(x, u, t) for a glven V(x) = x Px and
A>0." In “the definition it is understood that P is a p051t1ve definite
matrix and V(x) a Liapunov function.

The link between what has been previously said concerning minimizing
convergence time and a quasi time optimal design is provided by rewording the

last part of the definition above as follows: ".......for a V(x) = xTPx
chosen in a way which aids said minimization and A > 0." This “wording seems
more appropriate in that it leads the designer to consider advantages which
may accrue through proper selection of the design parameters implicit in the
P matrix. It will be seen in the discussion which follows that proper
selection of the Q matrix elements does lead to such an advantage in the
quasi time optimal design.

The following example is taken from reference 25. It illustrates how
use of the reworded definition leads to a quasi time optimal design which is
closer to the true time optimal one than the design based on the original
definition. No disadvantage is suffered. The resultant system is still
asymptotically stable. The only difference in the design procedure will be
to choose P (indirectly through choice of Q) keeping in mind the desired
objective of achieving a design as close to the true time optimal as possible.
The example follows.

Example 3-1: Given a plant with transfer function

As) = ot (3-28)
U 2
s  +s +1

where |u| < 1, design a controller which yields quasi time optimal performance
in the sense of the orlglnal definition given above. A phase space decompo-

sition of (3-28) with x = Xy gives

50



(3-29)
Xy, = <X - X, U
T
If V(x) = x Px, then
0(5, u) = EF(ATP + PA)x + QE?PEE (3-30)
where
0 1 0
A= ; and b =
-1 -1 1

In the reference, ATP + PA is arbitrarily set equal to -I. It is at this
point that the procedure suggested by the reworded definitiop departs from
that of the original. The reworded definition would not allow a completely

arbitrary choice, but instead, ATP + PA would be set equal to -Q, with Q a
symmetric positive definite matrix. This point is pursued further below.
Proceeding with the -I choice, one finds the P matrix to be

1.5 0.5
P = (3-31)
0.5 1.0

This P matrix leads to the control policy

W= - sign(0.5x, + x2) (3-32)

1
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Consider now use of the reworded definition in deriving the control
policy. As mentioned above -Q is chosen in place of -I. The cost function
is K(x, u) = V(x, u), X being zero in the case of quasi time optimal control.
How is selection of the Q matrix elements to be made to aid in minimizing
this cost function? In order to answer this question, the control signal

given by (3-32) is written in general terms as follows

u = - sign(plzxl + p22x2) (3-33)

From (3-33) it is seen that the switching line equation is

p
X, = - 12 Xy (3-34)
Pao

If use is made of (3-11), (3-34) can be written

q
11 1
X, = - ——— X, = - ——X (3-35)
2 a1+ 1 1+8 71
where B is as defined for (3-12), and the parameter values ko = ay, T 1, and
a = -a_, = 1 pertain. From phase plane considerations, it is argued that to

o] o2
achieve minimum time in traversing from any initial condition to the origin,

it is advisable to have |x2| increase as much as possible before switching

occurs. To accomplish this, the magnitude of the slope of the switching line
should be as large as possible. Thus, B in (3-35) should be as small as
possible. Conclusions reached by this line of reasoning are in agreement with
the discussion pertaining to (3-23).

A basis for selection of 93 and 4y has been established. The value of

q,, can be taken as zero without loss of generality. It should be noted that

with the constraint on |u|, the origin will be reached without overshoot only
for initial conditions in certain regions. 1In this regard, the switching
line with the larger magnitude slope leads to 'greater overshoot for a given
set of initial conditions. These factors must be taken into consideration in
each particular problem.

For the case under consideration, the initial conditions are xl(O) = 0.5

and x2(0) = 1.0. Use of the reworded definition leads one to choose B << 1
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to «come closer to the true optimum solution. With B = 0,01, the control
policy is

Q.

u® = - sign (0.5%, + 0.505x2) (3-36)

1

rather than (3-32) where B = 1.0 was used. A comparison of trajectories for
the control policies given by (3-32) and (3-36) is shown in figure 3-3. The
time to the origin is approximately 5 seconds for the latter and 9 for the
former. The saturation function rather than the sign function was used in
both cases. It is clear that for the given initial conditions, B = .0l is a
better design choice. An additional benefit is that less fuel is consummed
with B = .01l. The measure used for this is 4§ |uldt and for 8 = 1.0 it is 1.68

whereas for B = .01 it is 1.47. It should be noted that making B less than
.01 only increases the slope of the switching line slightly. From (3-22) it
can be seen that the maximum magnitude for the slope of the switching line is
a = 1, and this value is approached as B approaches zero.
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CHAPTER IV
REDUCTION OF THE TRANSDUCER NOISE PROELEM
The Transducer Noise Problem (4.1.1)

From an engineering viewpoint, the need to use (n-1) derivatives of the
output in generating the control signal is undesirable since these derivative
signals most likely will be corrupted by noise. Problems which might arise
due to transducer noise are best understood by considering the form of the
control law which is, as seen in (2-14), the product of the switching
function and the magnitude function. Transducer noise in either of these
signals may adversely affect system behavior in the following ways:

(i) Saturation due to noise may occur at the plant input because
of a large gain, k, in the saturation function or large gains
associated with the signals of the magnitude function.

(ii) The control signal may have an incorrect sign due to the
corruption of the saturation-function signals by noise.

(iii) The control signal may have insufficient amplitude due to
noise in the signals of the magnitude function.

(iv) A d.c. bias and/or a beat signal may occur at the plant input
due to modulation effects produced by multiplication of noise
in the sat function by noise in the magnitude function.

The amplitude level and frequency range of transducer noise which cause
these effects to be objectionable in a given control problem depend on the
performance specifications and on the input saturation level of the plant.

In any event, since these noise problems are likely to arise, it would be
advantageous for the-system designer to have at his disposal some theoretical
guidelines for dealing with them. In this chapter, such guidelines are
developed. In Chapter V, some aspects of the noise problem which fall out-
side the realm of exact theoretical analysis are considered.

Since transducer noise becomes progressively worse in higher derivative
signals, the attack on the problem is directed toward eliminating these
signals from the control law entirely, or at least reducing the gains associ-
ated with them. The general problem is considered first, and then a very
useful theorem for linear time varying plants with zerces is developed.
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Elimination or Reduction of Plant States (4.2.1)

Except for plants with zeroes, which will be considered later, no way
has been found to eliminate higher order plant states from the switching
function. In fact, since the coefficient of the highest order error state,
e > in the switching function is Pon® then it cannot be zero since the P

matrix must be positive definite. Though higher order states generally
cannot be eliminated from the switching function, their effect may be sub-
stantially reduced through judicious choice of the Q matrix elements (and
hence on the coefficients of the switching function) was considered in
Chaper III relative to the convergence time problem. There, reduction of

the coefficients of the higher order error states was introduced in order to

decrease convergence time. Here, it is seen that an additional advantage
accrues, that of reducing problems resulting from transducer noise. In an
analog computer study of a second order systém, it was found that the mean
squared noise level into the plant could be reduced by a factor of one half
if B (defined in conjunction with (3-12)) is chosen as 0.1 rather than 10.

Possibilities for eliminating the higher order plant states from the
magnitude function of the control law do exist. In order to examine these,
the equation for a linear time varying plant with linear feedback is con-
sidered. This equation, similar to (2-2) with £ = 0 and F introduced as the
feedback matrix, is B

é = (A + BF)x + B(u + r) (4-1)

Following the controller design procedure as given in section 2.2.1 leads to
the following V function:

V(e) = gT(AOTP+PAO)_e_ —ZETP [Bu+ABr+( AA+BF)x] (L-2)

Before deriving the control law from (4-2) in the usual manner, it is
examined for possible ways to eliminate or reduce some or all of the com-
ponents of x in the resulting control law. One is led to suspect that such
ways exist because the first term on the right hand side of (4-2) possesses
"excess negative definiteness'" when Q = - (AOTP + PAo) is chosen, as it

usually is, to be a diagonal matrix. The phrase "excess negative definite-
ness" refers to the fact that the cross-product terms are absent from the
resultant quadratic form. To give a quantitative meaning to this phrase,

2

consider the quadratic form in two variables a;.e; t 2a12ele2 + Ay, -
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2

This quadratic form is negative definite if ay; < 0, and 811890 ~ @ =M >0,

12
The quantity M is the measure of "excess negative definiteness." The larger
M is, the more "excess negative definiteness" the quadratic form possesses.

The question, therefore, arises, can this "excess negative definiteness"

be used to absorb some of the other terms in the equations? This might be
possible if the terms to be absorbed are of the type which fit into the
quadratic form, i.e. products of two and orly two components of the e vector.
As (4-2) stands, no terms of this type arise other than those resulting from

-g_Qg, In order to generate other terms of suitable type, H.x. is added and

1d
subtracted within the square brackets of (4-2) to give
%(e) = —eTQe-2eTP [-H,e+Bu+ABr+H x+H x ] (4=3)
= T T= 1= 2=17d

where Hl + H2 = AA + BF

In (4-3), the term to be absorbed is 23?PH1§: Since PHl is generally not a

symmetric matrix, the following relationship is used:

T T T
2e PH e = [PH1+(PH1) ]l e (h-L)
T . .
where PHl + (PHl) is symmetric.
For convenience, let PHl + (PHl)T = -Q! Then, in order to absorb (4-4) into
—E?Qg_it is necessary that
Q+ Q' (4-5)

be positive definite for all variations in AA and B.

Another possibility which is explored is to handle Q' alone rather than
absorb it with Q. When treated separately, it suffices to make Q' positive
semidefinite for all plant parameter variations. When either of these
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approaches is successful through suitable choices for F, Q, and Hl, then all

or some of the plant state variables can be replaced by model state variables
in the magnitude function of the control law. This assumes that H, is chosen

such that H2§_is lacking some components of x. With the Q' term elther

absorbed or handled separately, the u vector must be chosen to satisfy

_29?P [BHfABEjHEElefQ] >0 (L4-6)

Elimination of All Plant States from the
Magnitude Function (4.2.2)

If it is possible to choose Hl = AA + BF, then H2 = 0 and all components

of the plant state vector can be eliminated from the magnitude function and
replaced by those of the model state vector. This procedure does not auto-
matically assure a reduction of noise level at the plant input, however.
Whether or not noise reduction is achieved depends to a large degree on the
required linear feedback matrix, F, if indeed an F exists at all which allows
elimination of all plant states. It may turn out that the magnitudes of
linear feedback gains required are such that no improvement in performance is
achieved over the design with plant states in the magnitude function. However,
this is a matter to be investigated for each specific design problem. In
general, it can be stated that necessary and sufficient conditions for re-
placing all ‘plant states by model states in the magnitude function of the
control law are:

(a) H) = AA + BF; (H2 = 0)

(b) Q + Q' is positive definite or Q' is positive
semidefinite.

It is only fair to warn at this point that it may be quite difficult to
determine when these conditions are satisfied for higher-order systems. An
example of this technique applied to a second-order problem is given in
section 4.4.1,

In cases where all components of the plant state vector can be replaced
by corresponding components of the model state vector in the magnitude
function of the control law, some freedom is gained in controlling the size
of the magnitude function by selection of the model. This was alluded to in
2.3.2 in connection with plants having hard saturation gain characteristics.
3ince the magnitude function then only depends on r and X4» an upper bound
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on.|u| can be determined such that |u| < U(r, Ed)' If the plant has a hard

saturation gain with saturation level, S, then by selecting the model properly

it may be possible to maintain U(g,lzd) < S, and thereby avoid operation in

the saturation region.

Elimination of the Highest Order Plant State
from the Magnitude Function (4.2.3)

If it is not possible or desirable using a linear feedback matrix to
eliminate all plant states it may be possible, with a less objectionable
linear feedback policy, to eliminate at least the highest order plant state

from the magnitude function. To achieve this goal, all elements of H2 in the

last column must be zero. Then, an attempt can be made to absorb (4-#) into
the —g?Qg_term, or the alternate approach can be taken of making Q' positive
semidefinite.

A procedure for choosing Hl so that Q' is positive semidefinite is as
follows: If the last column of H2 has all zeroes, then the element in the
last row and last column of Hl is the same as the corresponding element of

AA + BF. Let this element be gn° and then define Hl as

B i

H, =g (k-7)

1n on

The procedure is based on the proper selection of hln’ h?n’ "'h(n—l)n' It
can always be applied provided €on < 0. wWith this requirement on g met,
then Q' will be positive semidefinite if, as shown in Appendix D, the hin
terms are selected as follows:

P

_ in P _ -
hy = 5 i=1, 2,...n-1 (4-8)
nn
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where the p's are elements of the P matrix. With H, chosen to satisfy (4-7),
and (4-8), and g0 £ 0, the control law will not involve a term in X as part

of the magnitude function.

A choice of Hl useful for eliminating the highest order component from

the magnitude function is

H = (4-9)

nn

where g has the same definition as in (4-7). With this choice, conditions

are sought for which Q' can be absorbed by Q and (4-5) satisfied.
Manipulation of the Model Matrix (4.3.1)

In certain cases, the model matrix can be manipulated to effect a re-
duction in the magnitudes of the coefficients of the plant states in the
magnitude function or to extend the range of parameter variations for which
the conditions necessary for elimination of plant states can be satisfied.
The manipulation performed is to write the model equation as

Xq = (Do + Go)xd + BOB (4-10)

where A = D + G
o} o} o

Note that Ao is still the model matrix, therefore, model behavior is not

affected by this maneuver. The manipulation is carried through the time
derivative of the Liapunov function which is written as:

\}(g) = ST(DOP+PDO)3-23TP [BE+AB_1;+(AA'+BF)_J§_-GOxd] (k-11)
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where AA' = A - DO

The possibility that an advantage might be gained by this technique lies in
the fact that the magnitude of the elements of AA' might be smaller than those
of AA = A - Ao' This will lead to lower gains for the magnitude function

variables which may contain noise. Also, this manipulation technique can be

employed in conjunction with the techniques discussed in 4.2.1 through b.4.1.
Here the purpose would be to make it possible to satisfy (4-5) or to make Q'

positive semidefinite when it might not be possible with Do = Ao. In this

case the following definitions would be used in place of previous ones

D TP + PD = -Q
o o]

and

- 1
Hl + H2 = AA'" + BF

Application to a Second-Order Plant (4.4.1)

All of the techniques discussed above will now be applied to the same
second-order plant in order that they may be compared. The plant and model
chosen are ones used in an example in reference 13 so that the control laws

found here can be compared to that in the reference. The plant equation with
linear feedback is

|
1
1%
+
o
|+
&
+
]

(L-12)

where unity linear feedback is indicated by fll = -1 in the F matrix. There

is no loss of generality in letting f,. = f22 = 0 because the second column

21
of the B matrix is zero. The equation for the model used is

X, = x. + r (4-13)
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Thus

AA = A-A = - = (L-14)

where oo = a - 2.

In reference 13, the plant parameter variations where taken as 1 < K < 5,
and 1 <a <10 or -1 < a < 8. The control law derived there was of the form

u = [|r—x1‘ + 8‘x21] satk y (L-15)

where k = 20 and ¥y = el + 1.5e2

The coefficient of |r - xll used in reference 13 is three. If use is made of

the fact that time variations in numerator and denominator of this coefficient
are related, the procedure discussed in section 2.3.1, then a coefficient of
one is seen to be sufficient.

For this plant, the controller indicated by (4-15) was implemented on
the PACE 231-R Analog computer. A random noise generator with power spectrum
flat to 30 c.p.s. was used to simulate noise in the transducer measuring Xy

The mean squared transducer noise level was taken to be 1.45 x 10—l+ voltsz.

This led to a mean squared noise level into the plant of 62.5 volts2 and a
steady state d.c. error in x, of 0.15 volts. These results are to be compared
below to those using state eiimination techniques. A considerable reduction
of noise level into the plant will be noted.

Example 4-1: Elimination of all plant States from the Magnitude
Function.-For the problem under consideration

0 0
Hl+H2 = AA+BF = (4-16)
(2-K) (Kflg—a)
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For elimination of all plant states, H2 = 0 is chosen. The elements of the

Q' matrix are found to be
! —— -
q 11 2p12(2 K)
(Kflg-a)—pEZ(E—K) (4-17)

! -
5y Pip

' = _ -
o0 2py(Kf a)

where Pip and P,, are elements of the P matrix with values 1/4 and 3/8

respectively found from the solution of
T
A'P +PA = -1 (4-18)
(o] o]

where I is the identity matrix

With Q = I, the elements of Q + Q' Become

t =
a;,*a’y; = K/2

q,%a" 5 = Ap*e'py T (l/h)(a-Kf12)+(3/8)(K—2)

1+(3/4) (a-K£. ) (L-19)

¥
Aot o 12
Conditions required for positive definiteness of (4-19) are

K>0 (4-20-a)

(K/2) [14(3/4) (a=ke )] = [(L/8)(amKe )4(3/8) (k=2)1° > 0

(4-20-Db)
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The first of these, (4-20-a), is always satisfied if K > 0 is assumed. )
Because it would be most desirable not to use rate feedback, a check is made

to see if (4-20-b) can be satisfied with le = 0. Unfortunately, it cannot

be if the parameter variations are taken to be the same as those used in

connection with (4-15). Therefore, f12 = -1 is tried. With this amount of

linear rate feedback (4-20-b) can be satisfied for K > 1 and -1.5 a < 8.5
whieh includes the range used for (4-15). Thus, with le = -1, all plant

states can be eliminated from the control law which then becomes

u = [|r-xdl| + 8‘xd2|] satk y (4-21)

instead of (4-15). Since this result is achieved using a gain of -1 only for
X, as compared to a gain of 8 for |x2] in (4-15), a significant reduction of

the noise level into the plant seems likely. For the same transducer noise
used with control law (4-15), the mean squared noise lsvel into the plant
using (4-21) was only 3.5 volts” instead of 62.5 volts®. 1In addition, no
measurable d.c. error in Xy appeared as it did when control law (4-15) was
used.

Example 4-2: Elimination of Highest Order Plant State from the Magni-
tude Function.- Here the two techniques for eliminating the highest order
plant state are applied. Results obtained will be compared to those of the
example U-1. The first technique considered is that relating to (4-7). The
parameter o is

g = g22 = Kf12 - o (u‘22)

and according to (4-7) and (u4-8),

0 0 0 0
Hl = &, = (Kfl2—a) (L-23)
Pyp 2/3 1
—= 1
Poo
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Use of (4-23) and (4-16) yield

0 0
H, = (Lh-2k)
(2-K)+(2/3) (aks ) O

With Hl chosen as in (4-23), Q' is positive semidefinite if

8yy 20 (4-25)

For the same range of parameters previously considered, (4-25) can only be
satisfied if f12 = -1. Thus, this approach requires the use of linear rate

feedback. The control law resulting is
u = [[r—xl| + 6Iel{ + 9{xd2|] satk vy (4-26)

Since it has been previously determined in example 4-1 that use of unity
linear rate feedback allows removal of all the plant states, there is no

advantage of using f12 = -1, and only removing x2| from the magnitude

function.

In order to see if the highest order plant state can be eliminated from
the magnitude function without resorting to linear rate feedback, the alter-
nate approach indicated by (4-9) is tried. Thus,

H = sy H, = (4-27)
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where it has been assumed that le = 0. The Q' matrix resulting from this

choice of Hl is

Q' = (4-28)

Thus, |x2| can be replaced by de2l if

1 D. A0
Q+q' = 12 (4-29)
D, % (1+2p22a)

is positive definite. The requirement for this is that

_(plga)2 + 2py,0 + 1= ~(1/16)6° + (3/W)a + 1 > 0 (4-30)

This is satisfied for -1.2 < a < 13.2, a range which exceeds that

specified for the control law of (4-15). Therefore, this choice of Hl allows

|x2| to be replaced by |xd2] even without use of linear rate feedback., The

control law resulting is
u= [|r~xl| + 8|XdZI] satk v (4-31)

Since neither linear rate feedback nor |x2] is required in this approach, it

is reasonable to expect that noise levels into the plant would be less using
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(4-31) for control rather than (4-15). Computer results bear this out, and
do show a significant reduction in this noise level. In fact the mean
squared noise level into the plant was 0.45 volts? with a transducer mean

squared noise of 1.45 x lO“u voltsQ. This is considerably less than the
noise levels into the plant obtained using either control law (4-15) or
(4-21) of example 4-1. In addition to the reduction of noise level into the
plant, no d.c. error in Xy appeared.

Example 4-3: Manipulation of Model Matix.- The range of a for which
(4-30) can be satisfied may be extended for different values of P, and Pyo*

To obtain different values for these elements, the model matrix is manipu-
lated as discussed in relation to (4-10). Here Do and Go are taken as

D = y G = (L-32)
° L o2 © 2 0

. T _ . _ _ :
Solving Do P + PDO z -1 for P gives Pyp = 1/8 and Py, = 5/16. With these

values used in (4-30), the range of allowable variation in a is -1.55 < a
< 431.55.

Thus, use of this model matrix manipulation technique has greatly
extended the range over which a can vary and still not violate conditions
which allow |x2| to be eliminated from the magnitude function. Note that

this range is valid without using linear rate feedback. For K > 1, the
control law resulting is

u = [lr—xll + Qlel‘ + |0leaxlxd2|] satk vy ()4—33)

where this y differs from those of previous examples since the P matrix

elements are different. Here y = e, + 2.5e2. Note that the coefficient of

e, is 2.5 instead of the previous 1.5. This may be disadvantageous from a
noéise standpoint.

It is not intended that results of this example by compared to previous

results on the basis of noise level reduction, but merely to show that a much
greater range of a is attainable using the technique.
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Reduction of Order for Linear, Slowly Time Varying
Plants with Zeroes (4.5.1)

An ideal way to minimize the adverse effects of transducer noise on
system performance is to use a reduced plant and model which are of lower
order than the actual plant. In this way, higher order derivatives can be
eliminated from the switching function as well as from the magnitude function.
Such a reduction of order is possible for linear, slowly time varying plants
with zeroes. Parameter variations may be large, but within known, finite
bounds. It is necessary to assume that parameter variations are slow so that
the "frozen system" concept applies and a Laplace transform, transfer
function representation of the plant is valid.

In addition to plants with zeroes, the technique can be applied on an
approximate basis to linear, slowly time varying plants without zeroes.
Approximations involved for accomplishing this, and performance to be
expected are treated in section 4.6.1.

Reduction of order is accomplished by applying the design technique to
the reduced plant transfer function shown in figure 4-1, which is of lower
order than the complete plant transfer function. The prefilter contains
known, fixed plant poles. The number of poles contained in the prefilter is
at most equal to the number of plant zeroes. The presence of zeroes in the
transfer function allows u to be generated in a way which guarantees that the
states of the reduced plant are arbitrarily close to states of a model refer-
ence of order equal to that of the reduced plant. This result is stated in
the following theorem:

Theorem I: Given:

(i) a plant with transfer function

m

KH (s+zd)

J
s (s+p)Il T (s+p )]
=1 e h=j+1 "n

in which X(s) and U(s) are Laplace transforms of the plant output and input
respectively, K is of one sign and Kmin is known, the zd‘s and ph's may be

~lowly varying in an unknown fashion within known, finite bounds, m < n + q,
q > 0, and the pf's are known constants; and
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(ii) a stable model reference (all roots of its characteristic equation
have negative real parts) with transfer function '

Xd(s) B a
R(s)

2 (4-36)

k
E ais

i=0

where a = 1, Xd(s) and R(s) are Laplace transforms of the model output and

input respectively, and k = ¢ + n - m for q + j >m, or k =n - j for
q+3Jj<m, and a, = constant for i = 0, 1, 2...(k - 1); there exists an in-
put, u = :f—lU(s), which can be generated using model and plant outputs, Xy
and x, and their first k - 1 derivatives only such that |3J =V ele <e |

for t + «, where the error vector is defined by ey = Xy - X, and €41 T 8o

for i =1, 2, .. k - 1. Proof: Consider the plant transfer function to be
devided into three parts as shown in figure 4-1. The transfer functions for
those parts are as follows,

P (s) = %(s) - 1 (4-37)
o9 [fil (Sﬂ’fﬂ
m
P (s) = %(s) = T (stzy) (4-38)
d=1
P (s) = 2(s) K (4-39)
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and” are called the prefilter, zero section, and reduced plant respectively.
The. constants t and 1 are such that

qQ-t>0 (4-u40-a)
g-t+l<m (4-u40-b)
1 <73 (4-40-c)

Inequality (4-40-b) restricts the number of fixed poles of known
location which can be included in the prefilter to be at most equal to m.
Constants t and 1 will always be chosen such that equality pertains provided
there are sufficient known, fixed plant poles to do so.

The differential equations resulting from the three transfer functions
(4-37) through (4-39) are

cylamt) L lamtrkel) o (aet) (4-41)

1 3

where a5 a,:..3y are constant coefficients of the polynominal resulting from
1

expansion of the producth_Il (s + pf).

2

_.m (m-1)
W=y + bly + ...by (4-u2)
where bl’ b2 Ve bm are coefficients of the polynomial resulting from ex-
m
pansion of the product I, (s + zd).
xk + ckx(k-l) + ck_lx(k—Q) + ...clxt = Kw (4-43)
where Cy» Gy +» € are coefficients of the polynomial resulting from ex-

pansion of the product
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Let (4-u43) be expressed as

3('_ = (Ao + AA)X + bw (L-4b)

where AO + AA is a kxk matrix, 2? is the k column vector [0, 0, ...k], and
AO is the model matrix defined below. Let the model reference be given by

the vector differential equation corresponding to (4-36), i.e.

X, =AxX,+br (4-45)
(e} (@]

where Ao is a stable kxk ratrix, boT the k column vector [0, O, ... ao], and

Xq; = Xd(i+l) for i1 =1, 2, .. k-1

If an error is defined as

e = X. - X (4-46)

then (4-44) can be subtracted from (4-45) to give

e =Ae+(br - bw - AAX) (4-47)

Substituting for w from (4-42) into (u4-47) gives

-1

* m m
e=Ae- [b(y +by "+ ...by - b_or + AAx] (4-48)
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A Liapunov function, V(g) = g?Pg_as in (2-7), is associated with (u4-u48). It
follows from the development in section 2.2.1 that lEJ is ultimately bounded,
i.e., Ig_l <€ for t » = if

Aa

K

o m-1 j a l | k
y z ‘b _ l v |+ {_9‘ r| + I
j=0 | m-dim i K'm 1=1

. |xi| satky (4-49)

where subscript m indicates maximum value and

01k®1
1

Y =

N~ o=

i

With ym generated as in (4-49), u can be synthesized as in (4-41) since
all of the required signals besides y™ can be obtained through successive

integrations of ym. Thus, the theorem is proved.

Application of Reduction of Order Technique (4.5.2)

The technique introduced in 4.5.1 is here applied to a plant with transfer

function

%(s) - K(s+zl)(s+22) (4-50)
S(s+pl)(s+p2)

in which P and p, are known constants, K, zy and z, are slowly varying

within known finite bounds, and K > 0. The model transfer function can be
first order since two zerces allow two poles to be placed in the prefilter
position. The reduced plant equation is

(4-51)

X, _K
SORE DX
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and the first order model chosen has transfer function

X a
a . _ % (4-52)
ﬁ_(s) T s+a

The procedure leading to (4-48) is followed to yield for this problem
e + ae = ao(r—x)-K[y + (zl+zz)y + zlzzy] (4-53)

A suitable Liapunov function for (4-53) is

V(e) = (1/2)e? (4-51)

for which

a
L
K

. 2 . .
V = -a e -Kely + (zl+zz)y + 2,2,y - (r-x)] (4-55)

To insure that Igj is ultimately bounded, ¥ is chosen as
L3 - ao
y = [,zl+22|m ly| + lzlzzlm ly| +|—Elm |r-x|] satke (4-56)

where subscript m indicates maximum value.

The control signal derived using (u4-41) is

u=y+ (pl + p2)§ + PP,y (4-57)
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An analog computer study of controller operation was made using the
following parameter values:

|Z I =1,

K>1,a =1, k = 100, ‘zl+z
max ax

2

P; =P, = 0.5 + jv 3/2. For these values, the control signal becomes

With this control signal and with r = U(t), a unit step function, the
plant output followed the model output very closely for the several different
zero locations including complex conjugate zeroes on the imaginary axis. The
peak error in all cases was less than one percent of the step amplitude.

An important consideration from an engineering viewpoint is the sensi-
tivity of the response to variations in the location of the poles at s = P,

and s = Py In many cases, location of these poles may not be known exactly

or may vary slightly during operation. In order for the technique to be
useful, the response must be fairly insensitive to these variations. Several
computer runs were made with these poles moved from their nominal positions
to the positions indicated in figure 4-2, It is to be emphasized that the
control signal remained unchanged for these runs, i.e. u as given by (u4-58)
was used. Even under these conditions, the plant followed the model so
closely that the peak error again did not exceed one percent of the input
step amplitude, indicating a low sensitivity to variations in the location of
assumed known, fixed poles.

The Non-Minimum Phase Zero Problem (4.5.3)

The bounds for z, and z, given in section 4.5.2 do not restrict the plant

zeroes to lie in the left half of the s plane. However, when either or both
zeroes are in the right half plane, certain difficulties arise because of the
nature of the control signal required to cause the plant to follow a given
model. Consider in (4-50) the zero at z, to be in the right half plane at

5 = tz,. If R(s) = A/s and the plant is to follow the model of (4-52) then
letting X(s) = Xd(s) gives

Aao(s+pl)(s+p2)

K(S+ao)(s—zl)(s+z2) (4-59)

U(s) =
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The inverse Laplace transform of (4-59) indicates that u(t) has a term of the
z.t
form e , an increasing exponential. This is a consequence of the fact that
the plant is to be forced to behave like a model without a right half plane
zero. If the model had the same right-half plane zero as the plant, this
situation would not arise. However, if the location of model and plant
zeroes are not exactly the same, an exponentially increasing u(t) would still
be required. Though being considered here in relation to (4-u8), this
problem is general and could arise in designs previously considered not re-
lated to the reduction of order technique.

In the problem under consideration, the nonlinear controller will provide
the exponentially increasing control signal called for by the inverse of
(4-59). However, saturation levels in the controller and plant limit the
length of time over which control can be effected. When these levels are
reached, the controller must be shut off.

Computer results for system behavior were obtained with zeroes as

s =+ .-5, s =-2.0 and also s = -0.25, s = 1.0. Other parameter values used
were as indicated in section 4.5.2. In each case, the bounds previously
indicated for |zl =z, and Izlz2| are satisfied. Therefore, the

max max

control signal given by (4-58) served in these cases as well. For a step
input to the model, the plant tracked the model quite closely before satu-
ration levels were reached, and the measured control signal was almost
exactly that given by the inverse transform of (4-59). The length of time
required to reach saturation levels in a function of A and z)- For instance

with A = 1 volt, the controller operated for 65 seconds with z, = 0.05, but
only for 9 seconds with z, = +0.25 before saturation levels within the

system were reached.
Extension to Plants without Zeroes (4.6.1)

In order to broaden the class of problems for which the reduction-of-
order technique can be used, consideration is given here to its extension to
linear plants with slowly varying parameters but without zeroces. The ideas
to be presented are applicable to plants with higher order transfer functions,
but discussion here is limited to a second order plant in order not to dbscure
results. Let the transfer function for such a plant be

K

X —
U(S) = m (4-65)

in which K and a are slowly varying within known bounds and K > 0. In order
to introduce a zero, suppose that this plant is preceeded by a unity pre-

- filter of the form
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(s + K)

G(s) = (s + K) (4-66)

Note that since this prefilter has unity transfer function it need not
actually be instrumented. The overall transfer function then becomes

_ K (s + K)
" s(s+K)(s+a)

o}
—

(4-67)

Since K/(s + K) 1 for 0<w << K, then over this frequency range a good
approximation to (4-67) is

(s) s + K

ETEIET for O <w << K (L4-68)

STEY

Thus, with the help of the approximation, a zero has been introduced into the
transfer function without raising the order of the denominator. Application
of the reduction of order technique can be made directly to (4-68). If this
is done using a model with equation

ﬁ +ax,=ar (4-69)
o) o)

then the control law becomes

u = [Kméx IUI + !almax !XI + ao |r—x|] satke (4-70)

The effectiveness of this control signal is causing the plant to track a
given model is dependent on K min 25 well as the power dens1ty spectrum of the

input, r. This is shown in figures u4-3 and 4-4 where fw e dt vs. K for
r = U(t) is plotted in the former, and fw e dt VS. w for r = siwt in the

latter, These results were obtained using a digital computer simulation for
the plant given by (4-65) and the model by (4-639). Parameters used were
a, = 2, Kmax = 10, a = 2, and k = 100,
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. The curve in figure 4-3 serves as a design curve for a step inmput. It
can be used to determine what Kmin is required to meet a given specification

on fw e?dat. If no preamplifier is needed to achieve this Knin (i.e. the
0

plant gain itself is adequate), then there definitely is an advantage to be
gained by having eliminated e, and x, from the control law. If preampli-
fication is needed to achieve”the required Kmin’ then an advantage may or

may not be gained over using the exact control law. This is dependent on
the amount of preamplification required, and whether or not this additional
gain accentuates transducer noise in e, and Xy to a level higher than that

which would result using e, and x, to generate the exact control signal.
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CHAPTER V
AN ENGINEERING DESIGN PROBLEM
Introductory Comments (5.1.1)

The transducer noise problem discussed in Chapter IV is only one of the
difficulties facing the design engineer in applying the controller synthesis
technique to a real problem. Others which arise are brought out in this
chapter by actually designing a controller for pitch axis stability aug-

mentation of the X-15 manned re-entry vehicles’al, and then studying this

design through an analog computer simulation of the system. This problem is
chosen because of its theoretical as well as practical significance.

The extremely large range of parameter variations which are encountered

over the flight regime of the vehicle are as indicated in Table 5.18. The
parameters listed are those of the short period approximation to the plant
transfer function which is given by

2
Pls) - éis) ] Kewa Ta(s+l/Ta) (5-1)
§(s) sz+2£ st 2
aa a

where 0 is pitch rate, and 8, elevator deflection angle, The actuator for
the elevator is a hydraulic motor. If an approximation to its transfer
function is taken as KH /s, then this combines with (5-1) to give

KHK(s + z)

8(s) _ (5-2)

U(s) ~

s(s2 + as + b)
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TABLE

.'C:
5.1

Variation of Parameters with Mach Number and Altitude

*

from reference 8

Dozéigzon L](.Eﬁ;ctéc)le N\l::%te}r -1/Tq Ky fa. Wy Wa
1 35,000 | 0,3 |-0,123 |0,1066 | 0,2064 | 1,988
4 40,000 1,0 |-0,282 0,312 10,445 |2,072
5 40,000 1,0 |-0,206 |o0,262 10,375 | 2,769
9 70,000 | 2.0 |-0,088 |0,0583 |0,1052 | 2,631
_13 100,000 4,0 10,0366 0223 |0,0396 | 1,919
16 140,000 6,0 | -0,00794] 0,00865| 0,00823| 0,8067
17 1 6,0 |-0,0184 | 0,0198 | 0,019 | 1,203
18 120,000 6,0 |-0,02 0,0199 10,0276 | 1,859
21 60,000 6,0 1 =0,325 10,562 10,326 4,327 |
{28 10,000 1,2 | -2,07 1,950 | 2,49 7.492
29 10,000 1 -1,975 | 3,42 2,31 4,915
30 10,000 0,6 |-0,955 | 2,03 0,943 | 2,5708
31 _5,000 0,6 | -1,163 | 2,92 1,113 12,550 |
32 ) 0,2 | -0,0356 | 0,00343] 0,151 1,511
33 160,000 6,0 | -0,00368] 0,00394] 0,0038 ] 0,555
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A

where K gain of hydraulic motor

H
_ 2
K = Kéwa Ta
z = 1/Ta
a = 2§£ua
b = w
a

U(s) - Transform of u(t), the control signal into hydraulic motor

The approximation ot the motor transfer function neglects the quadratic in

s which appears in the denominator of the exact transfer function. (Refer
to figure 5-10). Similarly, an approximation to the transfer function of the
rate gyro used to measure 8 is Kg, a constant. A discussion of problems

arising due to these approximations is postponed until section 5.3.3.
Initially, it is assumed that the motor and gyro are exactly represented by
transfer functions KH/S and Kg respectively. Designs based on this as-

sumption are discussed in sections 5.2.1 through 5.3.2. In section 5.2.1,
the design does not make use of the reduction-of-order technique. This
design is then compared to that of section 5.3.1 which is based on reduction-
of-order. The comparison points out the considerable advantages of the
latter design.

Design Not employing The Reduction-of-Order Technique (5.2.1)

Since the transfer function of (5-2) has a left half plane zero and a
fixed pole at the origin, it is possible to apply the reduction-of-order
technique introduced in section 4.5.1, If applied, the reduced plant trans-
fer function is second-order, consequently a second-order model can be used.
In order to demonstrate the advantages of the reduction-of-order technique,

a design not using it is presented in this section, and then compared to the
design which does use it given in section 5.3.1. An obvious advantage of the
latter design is that the second derivative of pitch rate is not required in

generating the control signal. Other advantages will be mentioned in section
5.3.1.

A block diagram for the design not employing the reductipcn-of-order
technique is shown in figure 5-1. Because the plant has a zero, the reference
input, ér’ is not used as an input to the hydraulic motor. As discussed in
section 2.2.2, this is required to avoid impulses in the control signal when

ér has finite discontinuities. The state equation derived from (5-2) is
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x=Ac+Bu=|0 0 1|x+|0 0 0}u (5-3)
K b -a | |k k, 0

where kl = KHKz’ and k2 = KHK

Model selection plays an important part in the design procedure. One
must be chosen which causes the plant behavior to satisfy specifications, and
also makes the elements of the AA matrix as small as possible. Some trial
and error is a necessary part of this selection procedure.

The specification on responses to step inputs is quoted from reference 8:
",... the system is required to have less than 25% overshoot and to damp to
one eighth amplitude or less in one cycle when subjected to a step input.
Furthermore, the response time (time to reach 90% of. the command (reference
input) value) shall be less than three seconds." The specification does not
stipulate how much less than three seconds the response time might be, but

in selecting the model it was assumed that the vehicle could not realistically

be expected to perform the maneuver in too much less time than this. With
this in mind, as well as the goal of keeping elements of AA small, the
following third order model was selected:

T 1 — .
0 1 0 0 0 O
xg = Ay *BI = 0 0 1| xg+| 00 0 le (58
| ;1.2 -2.81 -1.3 1.2 0 0
] L —

The model was intentionally chosen not to have derivatives of ér so that

impulses would be avoided in generating the control signal.

According to the design procedure, e is defined as Xy " x and (5-3) is

subtracted from (5-4) to give
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e = 0 0 1 e + 0 0 0 ]x
-1.2 -2.81 -1.3 -1.2 B o«
0 0 0 0
0 e +|0 0 0|y (5-5)
1.2 | ky ky 0

where B = b - 2.81 and a = a - 1.3.

The control law required to guarantee that ng is ultimately bounded is

* * *
+c, Ile +cgy |x3| +c, lu|1 satky (5-6)

where ¢y ='|l.2/k2|, c, = IB/kzl, Cy = lu/k2|, and ¢, = lkl/kQI. The maxi-

mum value for each of these coefficients is denoted by an asterisk and may be
found in Table 5.2. The coefficient ¢, is independent of KH' Coefficients

y
cs Sy 5 were calculated assuming KH = 1.

is greater or less than one, then ¢y through c, are decreased or increased

, and ¢ Tf the hydraulic motor gain

respectively.

= 1.229. py, = 1.330.

For Q = I, the coefficients of the y function are Py3 = 0.u415,

Pp3 The parameter values found above numerically
specify the control law.
integration of u in (5-6).

The control signal, u, is obtained by a single

One engineering design problem is evident from figure 5-2 where instru-
mentation for generating u is shown. Although the gyro used to measure Xy

and x3 are

generated using approximate derivative circuits. It will not be assumed that

@ 3 is chosen large enough to neglect, but instead,(ud will be made as small

as practically possible in order to avoid accentuating high frequency noise.
Since the derivative circuit poles were not accounted for in the design, a

has to a first approximation been assumed to be ideal, X,
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Parameter Variations in Equation (5-5)

TABLE 5.

2

Pondition | c,=[1 .2/k2] 02-_:“8/]:2[ 0= | /%) cy=|xy/x,|

] Q.20 | 0,375 [ 0,24 Q123 |

A Q.122 Q.75 0,0225 Q..Z_L__M |

2 0,123 0.5 0,954 0,206 |

9 0,261 0,9 0,237 0,088

13 0,539 0,36 0,585 00,0366

16 1,695 3,04 1,8 0,00794

17 0,771 0,89 0,8 0,0184

18 0,448 0,24 0,465 0,02585 |
21 0,058 _0.76 0,0308 0,325

28 0,0228 1,02 0,0625 2.0T*

20 | 0,0287 0.5 0,0805 1,975

30 _0,0854 0,16 0,025 0,955

21 0,725 0,23 0,06 1,163
3 5 45 2,8 5,65 |  0,0356

33 3 64 7,6%_ 3,04 0,00%68 |
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stability problem resulted for certain plant parameter values. In particular,
even withcud = 100 rad/sec, a figure much larger than the model bandwidth '

which is only on the order of one rad/sec, the system oscillated at 16 cycles
per second for plant condition 28, probably because this condition has the

highest plant gain, k2 = 52.5. The amplitude of this oscillation, though not

significant in X,, was large enough in the derivative signals to cause the
steady state value of X, to be 30% lower than the desired value. The oscil-

lation could be eliminated by setting c, to zero in (5-6). Performance with

3
cy = 0 was still satisfactory, which points out that conditions imposed on u

by the control law are sufficient, but not necessary. The magnitude function
had sufficient amplitude even with c_, = 0. This coefficient remains zero
for the remainder of the discussion.

Controller performance was checked for values of(ud less than 100 in

anticipation of the transducer noise problem. The performance measure used
was the ratio of ep, the peak error during the transient response to a step

input, to R, the amplitude of the reference step input. Results are shown

in figure 5-3 for plant condition 9. It is seen that sensitivity to w g is
quite high for wy < 50. An undamped oscillation occurred at a frequency of
1.4 cycles per second when(od was reduced to 10 rad/sec. Even with Wy s 20,

a damped oscillation of 3.15 cycles per second occurred during the transient.
The amplitude of this oscillation was approximately 5% of the input signal
amplitude.

Results shown in figure 5-3 will be compared later in section 5.3.1 with
the sensitivity to wy for the design based on the reduction-of-order technique.
There it will be seen that @ g for the single derivative circuit required can

be reduced almost to the model bandwidth without noticeable deterioration of
performance. Thus, the advantage accrued from this technique in the form of
noise reduction is obvious.

The undesired oscillations and sensitivity to Wy make the design technique

impractical for this problem if reduction-of-order is not used. However,
when the reduction-of-order technique is employed, much more encouraging
results are obtained. This is considered in the next section.

Design Employing the Reduction-of-Order Technique (5.3.1)

As discussed in section 5.2.1, the reduction-of-order technique is
applicable to the transfer function of (5-2). Employing the procedure of
section 4.5.1 gives the following decomposition for that transfer function:

30
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P (s) = (e) = ¢ (5-7-a)
P (s) = E(s) =5 + z (5-7-b)
z Y
k
P (s) = 3(s) = 52— (5-7-¢)

52 +as + b

where the notation of section 5.2.1 has been employed.

A second-order model which meets the specifications regarding response to
step inputs and which has been chosen properly with regard to other factors
previously discussed is

X, = A Xy +br = x, + é (5-8)
= < £ -0.8 -1.27 | = 0.8 r

The state equation relating to the reduced plant equation, (5-7-c), is

(5-9)

I -
It
=
+

E

fl
.

+

5
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The error equation resulting when (5-9) is subtracted from (5-8) is

0 1 n o 0 0
(5-10)

|o-
it
[
+
I
+

D
t
€

-0.8 -1.27 |~ B« 0.8

where o = a - 1.27 and B = b - 0.8, Forming the Liapunov function for (5-10)
and taking its derivative leads to the control law

. k- * % *
y =1 ¢y Ier_xl| +c, lel +cq |x2| +c, ly|1 satky (5-11)

where ¢, = |0.8/k2|, c, = |b/k2|, cy = |a/k2|, cy = Ikl/k2|. Asterisks
denote maximum values. These may be found in Table 5.3 for Cis Co» and Cqe

The maximum value for c, is found in Table 5.2.

Since the prefilter, (5-7-a), consists of an integrator, the control
signal, derived directly from (5-11) and the inverse transform of (5-7-a),

is u = y.

The coefficients of the y function, found from the solution of

ATp+pa =- = - (5-12)
(o] (o}

are p,, = 0.625 and Pyp = 0.496. The element q,, Was deliberately chosen as
0.01 rather than 1.0 to give a smaller coefficient for e, in the switching

function, and thereby help to reduce errors due to noise. For the P matrix

93



9y

TABLE 5.3

Parameter Variations in Equation (5-10)

Condition c,=]0.8/k,| c,=|b/k,| S,= | /x2|
1 0,234 1,55 0,219
4 0,088 _0,905 0,042 |
2 0,082 0,786 0,0535 |
9 0,174 1,51 0,23
13 0,359 1,64 0,214
16 1,130 0,916 1175
17 0,515 0,931 0,79
18 0,298 1,300 0,456
21 90,0387 0,898 ~0.00
28 90,0122 1,061 90,07
29 0,0192 I 0,578 0,08
_30 0,0569 _ 0,47 0,043
21 0,49 0,398 0.0365
32 3,64% 10, 4% 4,31%
23 2.43 0,934 3.82




A}

elements satisfying (5-12) the switching function becomes y = e, + 0.734 e,.

If dyy = 1.0 had been used, the switching function would have been y = e, t
1.42 e,- Thus, use of dyy = 0.01 rather than 1.0 leads to a reduction of
approximately 45% in the coefficient of e, -
Using the control law derived above, the plant output followed that of
the model very closely for all plant conditions listed in Table 5.1, and the
problems which arose in the design not employing reduction-of-order were
eliminated. Oscillations did not occur for any of the parameter values
listed even though the pole in the derivative circuit transfer function (see

figure 5-4) was again neglected in design. Sensitivity tow , was much less

for this design than indicated in figure 5-3 for the design of section 5.2.1.
This result might have been anticipated since the energy content of the
first-derivative signal, the highest derivative required in this case, is
restricted to a lower range of frequencies than the energy of the second
derivative signal. Consequently, distortion in the switching function is
less in this design for a given Wy These and other results are discussed

quantitatively below.

Derivative Circuit Bandwidth, Dependence of Transient Response
and Noise on Reference Input Amplitude, and
Disturbance Response (5.3.2)

Introductory Comments.-Since the design of section 5.3.1 based on the
reduction-of-order technique showed promise, it was subjected to an extensive
analog computer investigation to point out clearly the difficulties which
would arise in the transition from the theoretical to the hardware stage.
This study led to the techniques presented in this section for minimizing
some of the difficulties.

The sensitivity of response to derivative circuit bandwidth,lnd, was
determined. The minimum value of(nd for which the specifications could be
satisfied was chosen as the design value. It is shown that this procedure
led to the lowest possible mean squared noise level into the hydraulic motor.

The form of the response to step reference inputs was dependent on the
magnitude of the input, i.e. the plant did not track the model well for low
level inputs. For a given low level reference input, tracking could be
improved by either increasing the gain k in the linear region of the satu-
ration function or increasing coefficients of signals in the magnitude
function. The effect that increasing these gains has on the mean squared
noise levels into the motor, and the possibility of a trade-off between
tracking accuracy for low level inputs and this noise level are discussed.
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The mean squared noise level into the motor was larger for larger step
reference inputs because the magnitude function of the control lawwas larger.
A technique for using approximate signals in the magnitude function is intro-
duced. The approximate signals are such as to reduce the steady state value
of the magnitude function to zero. It is shown that this leads to consider-
able reduction in the noise level.

The controller was shown to have a disturbance rejection capability, i.e.
for step disturbance d = U(t), (see figure 5-4) ®y 0 in the steady state.

The response to dlsturbance was noted for various values of the parameters

W4 k, and ¢ 4
off existed between the form of disturbance response and the mean squared
noise level into the motor.

through ¢ This was done in order to determine what trade-

Derivative Circuit Bandwidth.-The mean squared noise level into the

hydraulic motor, un2, is plotted in figure 5-5 versus the derivative circuit
bandwidth, w4 for plant conditions 16 of Table 5.1. A one-volt step refer-
ence input signal was used. The level of the reference input is mentioned

explicitly because un2 is a function of Iérl as is discussed below. It is
clear from figure 5-5 that the lowest possible value of(ud should be chosen

which allows the specification on response to step commands to be met.

The integral squared error (hereafter referred to as ISE) for a step
reference input was used as a measure for determining how the transient re-
sponse was affected by reducing w ,. The form of the response was also noted
to insure that it conformed to the specifications. In contrast to results
obtained in section 5.3.1 for the design not employing the reduction-of-
order technique (see figure 5-3), the response in this design was insensitive

tocud for(ud > 2 radians/sec. Even for(ud = 2, the ISE for all plant con-

ditions given in Table 5.1 was approximately equal to that for(ud > 2, and

the slight variations in the forms of the transient responses, most pro-
nounced for plant conditions 16, 32, and 33, were not such as to fail to meet
specifications. Accordingly, w4 = 2 radians/second is satisfactory for the

design insofar as the specifications relating to response to command inputs

is concerned. This value fortud will lead to considerably lower noise levels

into the motor than Wy 20, the value which would have been required in the

design of section 5.3.1.

Transient Response Dependence on Reference Input Amplitude.-As mentioned
briefly in section 2.2.1, certain difficulties arise because the sign function
in the control law must be replaced by the saturation functlon. The orlgln
of these difficulties is that negatlve definiteness of the V function is not
guaranteed by the control law in the region where lyl < 1/k. The most
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disturbing practical consequence of this is that system performance is de-
pertdent on the reference input amplitude. This dependence was manifested by
a failure of the plant to track the model for small input amplitudes. An
inverse relationship was found between the reference input amplitude for which
failure to track occurs and the gain k in the linear region of the saturation
function. The larger k was, the smaller the reference input amplitude could
be before this deterioration of performance occurred. However, larger values

of k caused an increase in un2. Thus, a trade-off had to be made between

tracking accuracy for low level inputs and noise power into the plant.

In deciding what trade-off to make, the plant exhibiting the worst de-
gradation of performance was used. The ISE to a step input was used as a
measure to determine that plant condition 16 was the most difficult to handle,
giving the largest ISE. The next most difficult was plant condition 32 which
has an ISE equal to one third of the previous case. Plant conditions giving
the lowest value of ISE to a step input were 28, 29, and 31. All of these
Wwere approximately one-twentieth of the value for condition 16, A gain k
equal to one was used in making all of these measurements.

In order-to demonstrate reference input-amplitude dependence, and the
dependence of the transient response on the parameter k, some computer
results are shown in figure 5-6. There the normalized peak error ep/r, where

R is the amplitude of the step reference input and ep is the peak error

during the transient, is plotted versus k and R in figures 5-6a and 5-6b
respectively. "From these results it is clear that information concerning
the minimum expected reference input amplitude must be available to the de-
signer if he is to make an intelligent choice of k.

Before a value of k was selected based solely on the considerations
above, further attempts were made to reduce the ISE to a step input by in-
creasing the coefficients of the magnitude function variables one at a time.
Replacing any one of the coefficients cl*, through’cq* in (5-11) by larger
coefficients led to a reduction in ISE. However, only increasing cl* reduced

ISE without increasing un2. Because increasing c.* had this effect, a trade-

1

off could be made between c.* and k, i.e. c¢,* could be replaced by a larger

1 1
value and k decreased while the ISE was held constant. The advantage which

was gained by the procedure was that un2 was decreased due to the reduction

of k. Results of the procedure are illustrated in figure 5-7. One curve

shown is for k = 0.5 and Ci = 100, and the other is for k = 1.0 and cl* = 10.

The ISE to a step input is the same for both sets of parameters. It is seen
2

that for n < 0.029 voltsz, the former values for k and cl* lead to lower

values of un2. Thus, decreasing k and increasing ci* gives a clear advantage

only if the transducer mean squared noise level is less than 0.029 voltsz.
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Each problem must be approached with the above considerations in mind to

arrive at suitable values for k and cl*. In this problem, k and cl* cannot .

be optimally specified without adding specifications as to allowable noise
power into the motor, minimum expected amplitude for & P and transducer noise
level.

Dependence of Noise Power into Motor on Reference Input Amplitude.-A
disturbing practical problem in the design was that the mean squared noise

level into the hydraulic motor, un2, was dependent on Ierl. This is shown in
figure 5-8 for plant condition 16. For ér =0, un2 was 0.59 voltsz, a value

too small to be read from the curve.

The explanation of this fact is that the magnitude function of the con-
trol law is a nonllnear, time-varying gain for noisy signals in the saturation
function, and this gain achieves a larger steady state value for larger step
reference inputs. The terms which cause this increased value for the magni-

tude function are c2*| ll and c, |y| in (5-11). A way to eliminate this

problem is discussed below.

The control signal u theoretically goes to zero in the steady state for
a step reference input because y goes to zero. Since this is the case, it
is reascnable to ask whether or not the magnitude function might be allowed
to go to zero in the steady state as well as the switching function without

serious consequences. If so, then un2 would be independent of Ierl, and
would have the value noted above for ér = 0. Fortunately, this procedure
worked and the advantage was gained.

Means for accompllshlng the results above are as follows. Instead of

generating y from y by a true integration, a network for approximate inte-
gration is used which has the transfer function

Y
a o1 (5-13)
T8 * 5%

where the subscript a is used to denote approximate value. If b in (5-13)
is small enough, Ya approximates y closely enough over a long enough time to

give controller behavior identical to that obtained when y is used in the
magnitude function. But unlike y, y, goes to zero in the steady state since

y goes to zero. The step response of the system was unaffected when y, re-
placed y with b = 0,03 in (5-13).
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As for the signal lel, it was replaced by |xla| where x._was generated

la
using a network with the following transfer function

X
la _ s (5-14)
% ) T ma
1
With d small enocught, X1, approximates X, closely enough during the transient

period, and in the steady state it goes to zero. A satisfactory value for
d was found to be 0.01.

With these approximate signals replacing the exact signals in the magni-

. . 2,
tude function of y, un2 was reduced to 0.54 volts , independent of IGPI.

Disturbance Response.-In section 2.4.1 it was shown that one is generally
unable to design for a specific disturbancé response. This is an unfortunate
restriction in the case of the X-15 problem since there is a specification
on disturbance response given in reference 8, which is quoted here: "As far
as gust disturbance response 'is concerned, the requirement is that such dis-
turbances will be damped to less than one-fourth amplitude in one cycle."

Though the controller given by the control law of (5-11) could not be
designed to satisfy the disturbance response specification quoted, it provided
rejection to step disturbances, d = U(t) in figure 5-4, under all plant
conditions of Table 5.1. For these plant conditions, the disturbance response
exhibited a damped oscillatory character with x, » 0 in the steady state.

Two extremes in terms of frequency of the response to a step disturbance are
shown in figure 5-9 for plant conditions 16 and 28. Table 5.4 gives values
of ISE with a one-volt step disturbance for all plant conditions except 5,
17 and 30. These were excluded because of their similarity to 4, 18 and 31
respective.y In order to determine whether or not some control could be
gained over the form of the disturbance response, the same parameters which
were varied in connection with the noise studies were again varied. What
was being sought was the basis for a trade-off between disturbance response
and mean squared noise level into the plant.

For plant conditions 16 with ér = 0and d =1 volt,md was varied from

2 to 20 radians. For wy 2 5, the ISE remained essentially equal to 0.86

voth-seconds. For md = 5 it was 0.88 and forvwd = 2 it was 1.15. The form

of the response was almost identical in all cases. For(ud = 2, the peak

overshoot was approximately 40% greater than for<»d > 5. Thus, though

: . Coe e s 2
w, = 2 was previously chosen on the basis of minimizing u o it may not be

d
the best choice from the point of view of disturbance response because of the
larger overshoot.
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TABLE 5.4

Integral Squared Error for One Volt Step Disturbance

Oondition ISE(voltsZsec.)
1 0,307
4 0,26
0,372
13 0,40
16 0,86
18 0,403
21 0,562
_28 0,140
29 0,177
31 0,22
32 0,45
33 _0.52
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when the gain k in the saturation function was varied from 1 to 10, the
ISE was reduced by only 16%. The form of the response was generally the
same for these values of k. However, for k = 10 the frequency of the damped
oscillation was 0.5 c.p.s. and it persisted for three cycles, while for k =1
the frequency was 0.134% c.p.s. and only one cycle occurred.

Varying the coefficient cl* and replacing X, and y by approximate values
in the magnitude function changed neither the form of the disturbance respmse
nor the ISE.

The parameter w , and k, then, do provide some basis for a trade-off

d
between un2 and the form and ISE of the step disturbance response.

Design Including Hydraulic Motor Dynamics and
Gyro Dynamics (5.3.3)

The complete system, i.e. one including hydraulic motor and gyro complex,
far out poles, is shown in figure 5-10 along with its component transfer
functions and the overall transfer function. The overall transfer function
is seventh-order instead of the third-order one used for the incomplete
system which excluded motor and gyro far out poles. Use of the reduction-of-
order technique for the complete system would lead to a sixth-order reduced
plant transfer function since one zero and a fixed pole at s = 0 are involved.
Even with a sixth-order description, exact application of the controller
design technique would require time derivatives of X) up to and including the

fifth. Since it is impractical to generate these higher order derivatives,
a way is sought to apply the design technique without them. Necessarily,
such a solution must be. based on an approximation to the actual system dy-
namics. As will be discussed and demonstrated by computer results, it is
possible through suitable linear compensating networks to make the approxi-
mate dynamics quite close to the true dynamics. Whether or not this is
practical in a given situation is dependent on the power density spectrum
of the transducer noise.

A look at the open loop pole zero plot of figure 5-11 leads to the con-
clusion that if the natural frequencies of the gyro and motor are large
enough, then the system transfer function can be adequately approximated by
the pole, zero cluster arcund the origin of the s plane, i.e. these will
dominate the system's dynamics. In this case, the complex poles of the gyro
and motor might be neglected, and the controller design would proceed exactly
as in section 5.3.1 because the approximate plant transfer function would be
just that of (5-2). The gyro and motor may have high enough natural fre-
quencies for this approximation to be valid. If they do not, then linear
compensating networks can be used to cancel gyro and motor complex poles and
place poles further out in the s plane. However, if compensation must be
used a problem may arise due to accentuation of high frequency transducer
noise by the differentiating characteristic of the required networks. For

107



LY. J

uoTioung Jaysued] welsAg o3eTdwo)n

oo’ { Z+,9) A~-3H..-3q fr 0 meen? f 24,00

10T-§ @andtg

uojjdung 19ysuvil dooT = (s)7

 p——— = (8)1
z 700 19aiy
« %m+9%m ® m~+~u le. . m+"m* § T+,8 o +etmifze )0
* ———— 1.JI|
(159 ) INVid YOILOW OI'IAVIAXH

108



X hydraulics

2. plsne
X gyro
plant
i
‘X \\
|
{f ? Siny ndd
1 /
X’ %
hydraulics
Hot to fcale
X gyro
X hydraulics

Figure 5-11: Open Loop Pole Zero Plot For L(s)

109



example, ift»g is too small, then the necessary compensation has the form

2
(S/Qg) + (Zgg/gg)s+1
)2

GC(S) = (5-16)

(s/m'g + (s E'g/m'g)s+l

where mé > mg. The asymptotic Bode diagram for (5-16) is shown in figure

5-12. If transducer noise is restricted to a range of frequencies well below
wg, then there is no problem. However, if the noise is not so restricted,

the rising characteristic of Gc(s) in the range fromtug tow' may cause

excessive noise levels at the input to the hydraulic motor.

In order to examine problems which arise from approximating system
dynamics by neglecting far out poles, the complete system was simulated on
the PACE analog computer. With far out poles neglected, the required con-
troller for pitch axis stability augmentation was that designed in 5.3.1
(control law (5-11)). Because the design is only approximate, the possi-
bility exists that the system will become unstable for high closed loop gains.
Factors of this closed loop gain are the magnitude function of the control
law, the gain k in the linear region of the saturation function, and the

plant gain, Ké(ua Ta' The first of these is time-varying and nonlinear and

the last. is dependent on altitude and mach number. The computer simulation
verified that .a stability problem did exist. For certain plant conditions
and reference input signal amplitudes, sinusoidal oscillations in the output

Xy occurred. This oscillation is not a limit cycle arising from approximating

the sign function by the saturation function which is discussed in section
2.2.1, It is an output mode associated with the neglected far out poles.
Since the forms of the nonlinearities in the controller are not amenable to
describing function analysis, computation of the amplitude and frequency of
oscillations is impossible. However, some qualitative observations can be
made. The loop gain is signal dependent since it is partially determined by
the signal dependent magnitude function of the control law. Consequently,
instability can be excited if initial conditions and/or the reference input
and disturbance signal amplitudes are large enough to make the closed loop
gain too high. In practice, then, an extensive computer investigation would
be required to determine regions of initial conditions, Xy (0) and X, (0),

which do not lead to the unstable condition. The size of these regions
would vary with plant conditions, reference input magnitude, and disturbance
signal magnitude. Operation would have to be restricted to the most con-
servative region. If this region is unsatisfactory, it must be extended by
using the linear compensation networks to move the neglected poles further
out.
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To put some of these ideas on a quantitative basis, the following com- .
puter study was made. With initial conditions‘xl(o) = x2(0) = 0, step

functions of different magnitudes were applied to the system first as
reference inputs and then as disturbances. The step magnitude resulting in
instability was found to be a function of the far out pole location. The
results of this study are presented below.

In the computer study, the gyro and hydraulic motor were assumed to have
the following characteristics3l,(ug = 70, Eg = 0.5, w, = 150, and Eh = 0.5,
The gain for the linear region of the saturation function was taken as k = 1.
It was found that the stability problem did not arise for plant conditions
16, 32, and 33, the three with lowest gains. Step inputs up to 10 volts were
employed, (the maximum compatible with computer saturation levels), but no
sign of instability appeared. For these three plant conditions, the response
to a step reference input or step disturbance input was nearly identical with
or without the far out poles in the system. One change only was required in
the controller. The derivative circuit bandwidth, w4 had to be increased

from 2 radians/second used in section 2.3.1 to 5 radians/second when far out
poles were in the system.

Plant conditions other than 16, 32, and 33 were not so easily handled.
Of the others, plant condition 28 was the least stable. Step inputs of 0.2
volts would excite steady oscillation for this condition. Let this value of
reference input be denoted by ler!c’ the critical magnitude. For reference

inputs less than ninety percent of the critical magnitude, the system oper-
ated as desired. Magnitudes of the reference input between ninety and one
hundred percent of the critical magnitude led to damped oscillations during
part of the transient period. Input magnitudes greater than critical re-
sulted in sustained oscillations.

An appreciation of the reason for the difference between the situation
for plant condition 16, 32 and 33 and plant condition 28 can be gained by
comparing the Bode diagrams for each shown in figure 5-13. It is not intended
here that the Bode diagram be used as a tool for an exact stability analysis
of the nonlinear system. Arguments presented are qualitative rather than
quantitative, However, as will be shown, computer results bear out the fact
that there is a strong correlation in this case between results obtained for
the nonlinear design and results which would be predicted for a linear
system using the classical Bode diagram method of stability analysis. From
figure 5-13 it is seen that since |P(jw)7(jw)| is negligible for w > 5 for
plant conditions 16, 32, and 33, and since gyro and motor dynamics contribute
little phase angle in the region where w <5, an effective separation exists
between dominant and far out poles. On the other hand, |P(jw)/(jw)| for plant
condition 28 is appreciable beyond w = 5, and the motor and gyro do con-
tribute significant phase lag in that range of frequencies. Thus, for
condition 28, the separation does not exist, and one is led to suspect that
a stability problem will arise when the loop is closed. Since it did arise
for plant conditions other than 16, 32, and 33, a design was sought which
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would be suitable for these troublesome plant conditions. It is not un-
reasonable to have a different set of controller parameters for plant con-
ditions 16, 32 and 33 than for the others since the former are easily
identifiable by the pilot as two extremes of altitude. In fact, this was
found to be the most practical approach to the design. A single design
suitable for both sets of plant conditions could not be found short of
moving the neglected poles extremely far out.

Since plant condition 28 was the most easily excited into oscillation,
it was used in searching for an improved design. Ways were sought which
would avoid oscillations and give proper controller operation for large step
inputs. Because the amplitude of the magnitude function was part of the
reason for the problem, the first step taken in an attempt to solve it was to
reduce this amplitude. This was possible for a design excluding plant con-
ditions 16, 32 and 33, for then the coefficients of e - ll’ Ix |, and [x |

could be reduced to 0.515, 1.64, and 0.79 respectlvely, (see Table 5.3.)
This improved stability somewhat but did not increase Ierlc sufficiently to

be satisfactory. The reduced coefficients were retained for the remainder
of the computer study.

A reduction of the gain k in the linear region of the saturation functim
was tried next. This also improved stability, but again not sufflclently
An approx1mate inverse relationship was noted between k and |erlc’ i.e.

if |6r|c = 1 volt produced sustained oscillations with k = 1, then for k =
Ié | became approximately two volts. This approach could not be

carried to its logical conclusion, i.e. reduce k enough to avoid oscillations
for the largest expected value of |6 |, because then the behavior for small

values of |6 |would not be satlsfactory This problem was discussed in

section 5.3.2.

Since neither of the measures taken above solved the problem completely
the poles of the gyro and hydraulic motor had to be cancelled and new ones
placed further out with appropriate compensation networks. Compensators of
the form of (5-16) were placed in cascade before the hydraulic motor and
following the gyro. With the far out poles placed such that wé = wﬁ = 333,

and g' = Eﬂ = 0.455, then, for plant condition 28, Ié Ic was 3.5 volts for
k = l. If k was reduced to 0.5, the critical magnitude was found to be 7
volts. However, with Ie | =1 volt plant condition 17 exhibited a longer

transient and larger transient and steady-state errors with k = 0.5 than with
k = 1.0. Condition 17 was the worst in this regard., With k = 1.0, the
steady-state error was two percent of the step magnitude, but it increased to
four percent for k = 0.5, The specification does not state what the ac-
ceptable steady-state error is. However, if four percent is not objectionable,
then specifications can be met for the range of input levels 1 < IB I < (09)7)

with the initial conditions being considered.
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To emphasize the usefulness of the Bode diagram as an aid in design, it
is now shown how it was used to improve on the above results. The damping

ratios Eé and Eﬂ were reduced by a factor of one half so that phase-angle

contribution of the far out poles at the crossover frequency was reduced. A
considerable stabilizing influence was noted. The critical magnitude was
increased to 6 volts from 3.5. Reduction of these damping ratios by a factor
of one quarter increased the critical magnitude still further to a value of

7 volts. The results noted were obtained using k = 1.0. Reducing k to 0.5
approximately doubled the critical magnitudes given above.

The use of approximate signals for Xy and y, discussed in section 5.3.2

relative to noise reduction, proved to be another measure which could be used
to advantage in the.stability problem. .The critical magnitude, |er|C, could

be increased by replacing le| and |y| in the magnitude function with their

approximate values -as given in (5-14) and (5-13) respectively. The improved
stability can be attributed to a reduced closed loop gain due to a reduction
in the magnitude function amplitude. Transient responses using exact and

approximate values for |xl| and |y| are compared in figure 5-14. It is seen

there that use of exact values of the variables Xy and y caused a six cycle

per second oscillation with a peak-to-peak amplitude equal to seven and one
half percent of the eight volt reference input level. When approximate
values of the variables were used, these oscillations were eliminated.

Though the stability problem has been discussed relative to step refer-
ence inputs, similar results were observed for step disturbances. For example
in the design presented above in which Ierlc was found to be 7 volts for

k = 1, oscillations were not induced for |d] < 7 volts either. However, with
|d] = 8 volts, a steady-state oscillation of nine cycle per second and 0.5
volts peak-to-peak amplitude resulted. Again plant condition 28 was the least
stable. Therefore, the upper bound of seven volts is conservative for all
other plant conditions. Similar to results for reference inputs, the dis-
turbance responses with and without the far-out poles in the system were
practically identical provided |d| was less than seven volts.

It is well to conclude with a discussion of the nature of the stability
problem which arises due to neglecting instrument dynamics in the design. Is
it basic or does it arise simply because the state of the art of instrument
design is not sufficiently far advanced? In the case of the gyroscope, the
latter is the case. The transfer function for the rate gyro as given in
figure 5-9 is that for a single degree-of-freedom (SDF) device. With the
advent of new two degree-of-freedom (TDF) gyrosau such as the electrically
suspended gyro (ESG) invented by Dr. A. Nordsieck of the University of
Illinois, and developed by Minneapolis Honeywell and General Electric, the
problem considered above no longer exists. This is so because the TDF and
SDF gyros differ in their dynamic properties. In the SDF, the rotor precesses
in response to a displacement input. Thus, rotor inertia and restraining
spring lead to the quadratic denominator term in the transfer function. On
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the other hand, the TDF gyro rotor remains fixed in inertial space under all
operating conditions; hence the displacement to voltage transfer function is
simply a constant.

Development of improved hydraulic motors, or other type drives, could

lead to higher natural frequencies for these devices. Even if w0 cannot be

appreciably increased through development of improved drives, the compen-
sating network required to move the poles of the hydraulic motor to a
suitable location is not nearly as objectionable as that required to move

the poles of both the gyro and motor. For example, with no gyro poles present

the hydraulic motor poles need only to be moved to the location where wﬂ =

224, and Eg = 0.336 to get the same results obtained above with wﬁ = wé =

333 and Eg = Eé = 0.114. The compensator to do this places a high frequency

gain of 2.25 between gyro output and motor input, as compared to a high-
frequency gain of 106 needed when both gyro and motor must be compensated.
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CHAPTER VI

CONCLUSIONS

In this report, a controller synthesis procedure based on Liapunov's
"direct method™ has been taken from the realm of mathematical theory and
developed as a useful engineering design technique. The technique is
applicable to nonlinear as well as linear plants whose parameters may be
rapidly varying in an unknown fashion within known finite bounds. In tran-
sition from theory to practice, several significant modifications and ex-
tension of the procedure were made. Design problems resulting from trans-
ducer noise, disturbances, and instrument dynamics were investigated by
analog and digital computer simulation of complete systems. In certain
cases, ways were found to eliminate or minimize these problems. In others,
the problems could not be eliminated or minimized, but the study at least
revealed their existence.

Modifications of the theoretical procedure which are significant from
an engineering design point of view include techniques for avoiding impulses
in generating the contrel signal, and for reducing controller amplifier gains.
Extensions of the procedure were made in the areas of design for nonlinear,
time varying plants, incorporating a specification of convergence time as
part of the design problem and eliminating plant state variables from the
control signal to reduce adverse effects of transducer noise. Results re-
lating to convergence time were shown to be directly applicable to improving
the design of a class of quasi time optimal control systems.

The extension to allow designing for a specified convergence time is of
importance when starting systems with large initial errors. Though a design
equation was obtained for second-order systems, the complexity of the alge-
braic problem prohibited an exact solution for higher-order cases. However,
it was shown by computer simulation that insight gained from the solution of
the second-order case was useful in reducing convergence time for a third-
order system. The design equation for the second-order case was applied to
a quasi time optimal control problem. Performance was improved by a factor
of two over a design not employing these results, i.e. the time to reach the
origin from a given initial condition was reduced by a factor of one half.

Techniques introduced for replacing plant state variables by mecdel state
variables in the magnitude function of the control law were shown to lead to
significant reduction of the transducer noise problem. In one example, the
mean squared noise level into the plant was reduced by a factor of one
hundred by employing these techniques.
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A theorem was introduced relating to control of linear, slowly time
varying plants with zeroes. Its use permits controller design to be based
on a model and a reduced plant of lower order than the actual plant. For
example, a third order plant with two zerces was made to follow a first-
order model by using only the plant and model output signals to generate the
control signal. A third order model would have been required, along with
first and second derivatives of plant and model output signals had the
reduction-of-order technique not been employed. This technique is an ideal
way to minimize transducer noise problems since it avoids the need for higher
derivatives in generating the control signal. By example it was shown that

_the reduction-of-order technique can be applied on an approximate basis in
some cases to linear slowly time varying plants without zeroes.

The reduction-of-order technique was used to design a controller for
pitch axis stability augmentation of the X-15 manned reentry vehicle. Com-
puter results showed that the performance of the controller for a third-
order system which excluded the complex poles of both the gyro and hydraulic
motor was quite good. The outline of a design procedure for the system in-
cluding these poles was presented. Since the resultant transfer function is
seventh-order in this case, the procedure had to be approximate since trans-
ducer noise precluded use of higher derivatives to make it exact. The
approximation made was to neglect the complex poles of the gyro and motor
transfer functions, and assume that the system dynamic response was dominated
by the same three poles used in the design referred to above. It was shown
that stability of the approximate design was dependent on initial conditions
of the plant output and its first derivative as well as the magnitude of
reference and disturbance inputs. Hence, part of the design procedure would
be an extensive computer study to determine the stable operating conditions.
Stability can always be assured for all operating conditions by using linear
compensating networks to move the complex poles neglected in design far
enought out to the left in the s plane, However, such compensation may
result in an increased noise level into the hydraulic motor. A limited com-
puter study demonstrated the validity of the approximate design procedure
by showing that the controller performed quite well for operating conditions
which did not lead to instability. Techniques were introduced which extended
the range of stable operating conditions, while not increasing the noise
level into the motor.

Possible fruitful areas for further research which came to mind while
performing the research for this report are the following:

1. Generalizing the reduction-of-order technique to plants with
rapidly varying parameters, and/or to plants without zeroes.

2. Finding additional technqiues which allow control with less than
the total number of state variables.

3. Finding a way to track low level reference inputs other than

increasing the gain in the linear region of the saturation
function.
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4, Applying the technique to control problems which are not
amenable to other technigues.

Any of the above, if succeséfully accomplished, would greatly extend the
usefulness of the technique.
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APPENDIX A

DEFINITIONS AND THEOREMS PERTINENT
TO THE "DIRECT METHOD"

Emphasis in this report is on application of the "direct method” to
controller design rather than on the intricacies of the method itself. Con-
sequently, only those definitions and theorems required to understand the
design approach are presented. The theorems are stated without proof except
for theorems A.5 and A.6. Proofs for these are given because they are the
basis of the synthesis technique presented herein. A full treatment of the
details of the theory, including proofs of theorems, may be found in refer-
ences 22, 24,and 32.

The "direct method" can be applied to dynamical systems governed by the
vector differential equation

% = f(x, u, t) (A-1-a)

This is equivalent to the set of n scalar differential equations

m

¥ 1 2 .
Xy = fi(xl’ KgeeeoX 5 Uy Uy U yenall, t) i=1, 2,...n

(A-1-b)

The vector x is the plant state vector, and its components are the state
variables. In this report, the components of the plant state vector are
always taken as the plant output and its first n-1 derivatives. The vector
u is the control vector, and it too is taken throughout as the control signal
u, and its first m derivatives.

If u(t) = 0 for all t, then (A-1-a) is called "free" or "unforced" and
it becomes

x = £(x, t) (A-2)
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It is assumed throughout that the function f is continuous, and is such that
solutions of (A-1-a) exist, are unique, and are continuously dependent on the
initial value x_ (t ) at any t .
— o o
The following definitions, due to Liapunov, are quoted from reference 22.
Definition A-1: An equilibrium state Xq of a free dynamic system is stable
if for every real number § (¢, to) there exists a real number € > 0 such that

Ilfo -~ Ee]| < § implies

]|_@_(t;x,t)-g]lieforalltit
-0 (o]} e lo]

where @ (t; X to) is the unique solution to (A-2) for the initial conditions

X , i.e.
—o

(1) Q(to;x , £) =

(1) Blesx , ) = £B(t3x , t),t)

Definition A-2: An equilibrium state X, of a free dynamic system is asymp-

totically stable if
(i) it is stable

(ii) every motion starting sufficiently near %, converges to

X as t > o
—e

The above definitions are local in nature, i.e. they refer to behavior
near the equilibrium. If § is independent of t, then the stability is termed
uniform stability. In addition, the local nature of the concept of asymptotic
stability can be removed if in (ii) of Definition A-2, "sufficiently near"
includes all points X from which motion originates. In this case, the

equilibrium is-called asymptotically stable in the large32 and if "suf-
ficiently near" allows all points in the phase space, the equilibrium is
said to be asymptotically stable in the whole.

Further definitions required prior to the statement of theorems are
taken from Hahn.

Definition A-3: A function V(x, t) with V(0, t) = 0 is called positive
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(negative) definite if a function @(r) of class K exists such that the
relation '

Vix,t) > 8(|x]) (-8

i tisfied in K .
is satisfied in h’to

Remark A-3: The statement @(r) belongs to the class K means that @(r) is a
continuous, real function defined in the close interval 0 < r < h and that
@(r) vanishes at r = 0 and increases strictly monotonically with r. The

. « i \ T
notion lfJ indicates the absolute value of the vector x, i.e. x x. The
region Kh ‘ is the semicylindrical domain of the motion space,
"o
i.e. K, , =[xt |x] < h,t > t,]

o

Definition A-u4: A function V(k, t) is called radially unbounded if inequality
of definition A-3 is valid for arbitrarily large h and when @#(r) increases
unboundedly with r.

Definition A-5: A function V(x, t) is called decrescent if a function Y(r)

of the class K exists such that in Kh £
b
o)

vz, )] < v (x)
is valid.

Definitions A-1 through A-5 suffice to quote without proof the following
theorem from Hahn. The theorem is due to Barbashin and Krasovskii.

Theorem A.1 The equilibrium is asymptotically stable in the whole if there
exists a function V(x, t) which is everywhere positive definite, radially
unbounded, and decrescent, and whose total derivative for (A-2) is negative
definite.
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Definition A-6: A function V which satisfies the conditions of theorem A.l
is called a Liapunov function for the differential equation (A-2).

A theorem for linear autonomous free systems which is used in the design
procedure is quoted from reference 22,
Theorem A.2 (Liapunov) The equilibrium state X, = 0 of a continuous-time,

free, linear, stationary dynamic system
X = Ax (A-3)

where A is a constant matrix, is asymptotically stable (a) if and (b) only
if given a symmetric positive-definite matrix Q there exists a symmetric,
positive-definite matrix P which is the unique solution of the set of

n(n + 1)/2 linear equations

ATP + PA = -Q | (A-4)

and E?Pﬁ_is Liapunov function for (A-3).

Further theorems for linear stationary plants which are useful in the
design procedure are quoted from reference 24.

Theorem A.3 The equilibrium of (A-3), (detA#0) is uniformly asymptotically
stable in the whole if all the :

o5 = Re{sj} < 0 forj=1,2,...k <n

where sj is an eigenvalue of A and k is the number of distinct eigenvalues.
Theorem A.4 If the equilibrium of (A-3) is uniformly asymptotically stable,
then any real, symmetric, positive definite matrix Q, there exists a quad-
ratic form V(x) = x TPE_which is a Liapunov function for (A-3) in the sense

of Theorem A.1 where =-Q = ATP + PA.

Two theorems which pertain directly to the synthesis technique con-

. sidered herein have been recently reported by Graysonaa. The first supposedly
provides a theoretical justification for the synthesis technique, and the
second a basis for selecting the control vector. This author disagrees with
these claims. These theorems are presented so that the reasons for this
disggreement can be discussed.
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Theorem A.5 If, for the systems

x = g(x, z, W (A-5)

and

£(y) (A-86)

r~<
1]

where £(0) = g(0, 0, 0) = 0, scalar functions V(x) and Vl(z) exist such that

the following conditions are true,

1. V(x) = Vl(z) for all x = y is an open region

D about the origin

2. Vl(x) is positive definite

3. (a/4t) Vl(X) is negative definite

4. 0(§) Z, u) < Ql(z) for all x =y in D then

(A-5) is asymptotically stable; i.e, x-+0
a t » =

Proof: System (A-6) is asymptotically stable with respect to the equilibrium
y = O by conditions 2. and 3. and Theorem A.l. Also, for X, = Yo

t . t .
V() = V(x) + fto V(x,z,wdt < V,(y ) + jto v, (pdte

= Vl(y) for t > to

But Vl(x) + 0 as t + ». Hence, since V(x) is positive definite, V(x) » O

as t + »; therefore, x + 0 as t » =, Q.E.D.
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Grayson contends that theorem A.5 is necessary to provide mathematical
justlflcatlon for the synthesis technique because (A-5), the form of equatioh
arising in synthe31s, "does not possess an equilibrium state at x=0-a
tacit assumption in the theorems of the second method." But since x > 0,
the g + 0 also. Therefore, the theorem simply states that x = 0 is an equi-
librium state. It should be noted also that Grayson's proof is incorrect
because the inequality used relies on condition 4 which is not necessarily
true unless x = x, However, in gemeral x # y for t >t . Therefore, V may

be greater than V for t > t - The conclusion that x + 0 as t + = is correct,
however, since V(x) is p031t1ve definite by conditions 1 and 2 and V (x,2z,u)
is negative definite by conditions 3 and 4.

The theorem given in reference 33 for extending theorem A.5 into a
method of design for a class of systems by suitably selecting u is the
following:

Theorem A.6 Given the systems

x = f(x) + z(t) +u (A-7)

and

’A

£(y) (A-8)

where f£(0) = 0 and (A-8) is asymptotically stable, then (A-7) is asymp-
totically stable, i.e. X+*0as t >, if (grad V). (z+u)<0or

u, = - Izi(f)lmax sgn(gradx V)i’ i=1,....n

This theorem is invalid since the ui's selected are such that solutions

to (A-7) may not existzg. This problem is discussed at length in section
2.2.1 of Chapter II. To insure that solutions exist, the discontinuous sign
function is replaced by a continuous function. Here the continuous function
used is the saturation function. Because of this substitution, X may not
approach zero as t increases, but, as shown in Appendix C, |x[ can be made
arbitrarily small as t + o,

With the control vector selected so that solutions of (A-5) exist, it is
felt that this synthesis technique is mathematically justified and that the
development of the technique in Chapter II and Appendix C adequately demon-
strates this.
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APPENDIX B

SIGN OF ELEMENT IN FIRST ROW AND
LAST COLUMN OF P MATRIX

Consider the symmetric positive definite diagonal matrix, Q,

Q - . (B-1)
O .

and the nxn matrix Ao all of whose eigenvalues have negative real parts

[_b 1 0 . . .
0 0 1 . . .
AO = (B-2)
ag; 25y - . . ag,
The P matrix is defined as the solution of
T
AP +PA =-Q (B-3)

o) o
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The equation for Pin is, therefore

=q
11
pln = 2a (B-4)
01

Since Q is positive definite and Ao has eigenvalues with negative real parts,

then q;; > 0 and ay, < 0. Therefore, from (B-4)

pln >0
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APPENDIX C

STABILITY IN THE LINEAR REGION OF THE
SATURATION FUNCTION

To investigate the stability properties of (2-5) in the region where
lyl < 1/k, consider the expanded form of V, (2-20), which is

2 o m-1 j @ , T
51 Pin’me” [u J’U(m‘l)jio“j+1u PRI L 8;%,] (c-1)

<l
1]
]
[ =

i

where it has been assumed that Q = I, the identity matrix. The term in-

volving u" always makes a negative contribution to 0 therefore it can be
neglected in the following considerations and the results obtained will be
conservative. The remaining terms of V must satisfy the inequality

m-1 m n

n
2
-5 e p Y[U(ml)Zb Werre ot rax]<o0 (c-2)
i=1 i In 0 l 4=0 2+1 k=1 k'k

™~

When m = 0, (C-2) becomes

no, n
- I e, P [Blr+ Iax,., —La,e] <0 (c-3)
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in which the model states have been added and subracted within the square

brackets in order to introduce terms in e, and X31° The reason for doing
this is that the upper bound
n
B1r+1<§10thdk SMcw (C-4)

can be established for a bounded input, r, whereas a similar bound could not
be established in terms of plant states without making the unwarranted
assumption that the plant is stable. Another upper bound which can be estab-
lished and which is useful is

2 T 2.1/2
Iage | < (|ai|m)( z leil) < (Iailm)( L ne ") (C-5)
i=1 i=]1 i=1
where Iailm = M?x {Iai|} for i =1, 2,...n
The last inequality of (C-5) can be shown as follows:
n n n
(Ie) <(z leil) =( Ie) (C-6)
i=1 —o<g <t i=1 —o<g <o i=]1 T QO<e, <t
i i i
The last summation in (C-6) can be expressed
n n
T ei=K( b 612)1/2; for e, 2 0, i=1,2...n (C-7)
i=1 i=1
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»

where K is dependent on e To determine the maximum value of K, set

i . _
aK 9 iilei
5 = =0 j=1,2...n (c-8)
e de n
i 3 (% e 2)1/2
g=1 1
_ _
This is
j-1 n
t e.(e,~e, )+ I e,(e,—e.,)
ok _ =1t 1V gegn P (c-9)
aej n 2.3/2 N -
(_Z e,
i=1

Since (C-9) must be satisfied for all e including the smallest, it can only

be satisfied if

e; = ey for all i, j from 1 to n (Cc-10)

K = 4 n (C—ll)
max
Hence
n n
Le < (n % 812)1/2; ey > 0 for i=1,2...n (C-12)
i=1 i=1
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Use of (C-4) and (C-5) leads to the conservative inequality

V < -R%(K) + Py Mo, Vo RO (c-13)

where

R(K) = ( £ e /2

i

[ e =]
o

1

In the region where |y| < 1/k

V < -R%(k) + ar(k) + b (Cc-18)
where
a=dn o g
k i'max
and
plnM
b =
k

From (C-14) it can be seen that

V < 0 (C-15)

everywhere outside the spherical region
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R(K) <2+ 2 Vol (C-16)

By choosing k large enough R(k) can be made arbitrarily small. It can be
concluded that as t + ®, u will cause e to be within the region common to
R(k) and |y| < 1/k. Asymptotic stability cannot be concluded. Limit
cycles or a constant steady state error may exist, but can be made arbi-
trarily small by choosing k large enouth.

In the event m # 0, (C-3) must include the additional terms

m-1 j m
I b + I B T (c-17)

420 j+1°

within the square brackets.

If r and its derivatives are finite, then (C-4) becomes

T B .r+ % a Xl < M< (C-18)

Again an upper bound has been established, so the additional terms arising
due to derivatives of r are handled without complications. If the restrictim
that derivatives of r be finite is prohibitive, the problem can always be
formulated in a way which avoids derivatives of r as was discussed in 2.2.2,
The additional terms appearing in (C-3) due to u and its derivatives do
present a problem, however.

Since these terms are functions of the plant output and its first n-1
derivatives, an upper bound for them cannot be assumed to exist. A way to
handle this problem is to make k a function of these variables as follows:

k = k,+k

3
1 72 lbj+llmax E ]u ' (C-19)
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where k, and k, are constants, and ij+l|max = M?x {lbj+l|}
for j = 0, 1,...m-1
Thus, the equivalent of (C-14) for this case becomes
Vo< -R°(k) + aR(K) + b + c (c-20)
Pin Pipt Pin
where a = |a.| Y 1 s b = , and ¢ =
k i'max k
1 k 2
1
From (C-20), V < O outside the spherical region
a 1
R(k) <5+ Yalti(btc) (c-21)

This region can be made arbitrarily small also by choosing kl and k2 large

enough.

A procedure similar to that directly above may be followed for nonlinear
plants. For instance, consider example 2-1 in section 2.4.3. In this case

) 2 2 2
V = —(el +e2 )+2p12Y [-Ku—(K—Z)(r—xdl)-2xd2+-ax2 —(K—Z)el+2e2] (c-22)
and the appropriate choice for k is seen to be
K =k, + k,x,° (C-23)
T f1 T K%
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For this choice

¥

R(k) < a/2 + 1/2 Val+4(b+c) (C-24)
7 where
4p12 V2
“1
2p12M
b = m
1
c = 1
k2

Instrumenting the k's given by (C-19) or (C-23) considerably complicates
the controller and is not justified unless a computer study of the system
indicates that a problem may exist. In all of the examples used in the
report, no difficulties were encountered even thpugh a constant k was used
throughout.
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APPENDIX D

PROOF OF SEMIDEFINITENESS OF A
QUADRATIC FORM

With the matrix H, chosen as

1
W, O el O =
hln h2n : 1 on Pin  Pop ' Pon
Pin . .
where h, = fori=1,2...n-1, and p,_, for i = 1,2...n are the
in Pon in

elements of a symmetric positive definite matrix, it turns out that

T
PHl + (PHl) = 2PHl (D-2)

since PHl is symmetric.

Thus, in order to show that PHl + (PHl)T is positive semidefinite, it

suffices to show that

P11 P12+ Pipn 411 %12 - 313
P1p Py + Py 812 8y - @y

= = A (D-3)
lf}n * * pnzj Pin Po2n * Pm 4n ) ann
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AT o THR DA |

-

Al

is positive semidefinite. The elements a.. are given by
1]

=P

433 inP

nj

Therefore, the quadratic form g?Ag_is

n n

X Z p,._p._e.e
i=1 j=1 in“jn 173

which can be expressed as
T . -
+ (PHl) is positive

Since (D-6) > O for all e then PHl

(D-4)

(D-5)

(D-6)

semidefinite.
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